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A Graphical Analysis of the Interrelationships
among Waterborne Asbestos, Digestive
System Cancer and Population Density

by Michael E. Tarter,* Robert C. Cooper,*t and William R.

Freeman?

Five statistical procedures were used to partial the correlation between waterborne
ashestos and digestive site cancer for the putative effects of population density. These
include: analysis based on a data subset with roughly homogeneous population density;
standard residual analysis (partial correlation); conditional probability integral transfor-
mation; analysis based upon ranked data, and use of logarithmic transformation.

Nonparametric regression graphical technigues are applied to examine the nature or
shape of the asbestos-cancer dose-response curve. Evidence is presented that suggests
that there is considerable difference between analyses involving nonhigh-density tracts
and non-San Francisco tracts. Evidence is also presented that the modal-type nonpara-
metric regression curve forks or bifurcates when adjustment is made for population

density.

Introduction

In 1979, a study was completed by Cooper et al.
(I), which dealt with certain health effects of
asbestos in the domestic water supplies of five
California counties. Several publications (2,3)
and even a lawsuit involving the State of Con-
necticut and asbestos pipe producers have re-
sulted in part from the tentative findings of the
Cooper study that “a statistical association be-
tween asbestos fiber content in drinking water
and the incidence of certain cancers in the San
Francisco Bay Area has been shown.”

In testimony presented during the Connecticut
hearings, one witness suggested that the results
of the Cooper-Kanarek et al. study were suspect
due to lack of adjustment for, or partialling of, the
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papulation density variate. This paper describes a
follow-up investigation that was undertaken to
deal with the questions involving the population
density putative intervening variate.

The material presented here is not reported
upon in order of scientific significance, but in-
stead the simplest methodological approach is
described first and subsequent results are orga-
nized in terms of the complexity of the statistical
methodology used. For example, an investigation
in which the original Cooper et al. (7) study is
repeated on a subset of low and moderately popu-
lated census tracts is described. By far the most
interesting and dramatic reported here it is that
presented at the end of this paper, which relies on
a complex type of nonparametric regression (one
based on a locus of conditional density modes). It
demonstrates that the morbidity density may be
bimodal for high asbestos exposure and unimodal
for low asbestos exposure census tracts.

Exclusion of the Highly Dense
Tracts

The estimated distribution of census tract sub-
grouping population density variate Y is highly
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FiGURE 1. Population density-census tract frequency dia-
gram.
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FIGURE 2. Low to moderate density scatter diagram.

skewed. Figure 1 displays the frequency distribu-
tion of ¥ and the independent variate tract num-
ber code X. To avoid confusion (e.g., between 11
coincident points and 2 nearby single points, each
represented by the symbol ‘1°), a frequency of 10 is
represented by the character A, 11 by B, 12 by C,
and so on up to 35 (Z) and more (*). As an
indication of skewness, note that while most cen-
sus tracts contain less than the mean E (Y) =
5270 individuals per square mile, several census
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tracts are at least six times more densely popu-
lated than the mean. Relative to tracts where Y
takes on a value > 5270, tracts with ¥ < 5270
form an almost homogeneous subgrouping.
Furthermore, tract number (the X variate of Fig.
1) is a rough measure of geographic location.
Hence, the Bay Area population seems to consist
of the following three components: (1) a highly
dense component lying slightly to the right of the
mean tract number X = E{X) = 216 line; (2} a
moderately dense component below component 1
but above the Y = E{Y) = 5270 line; and finally
(3) a large group of tracts with moderate to low
densities, shown in Figure 1 enclosed by an edit-
ing rectangle.

When the region enclosed by the editing rectan-
gle is enlarged and a scatter diagram of the re-
gion is displayed as in Figure 2, there appears to
be a moderately homogeneous spread of Tract
POP DENSITY points in most portions of the
display not immediately to the right of the X =
216 line.

Studies of the variate log population density
(deseribed below) suggest that there may be two
distinct classifications within what appears by
eye to be one homogeneous grouping of low to
moderate density census tracts. Nevertheless, as
a preliminary analysis, it seems reasonable to
repeat the basic Cooper et al. (I) study with the
use of the low to moderate population density
tracts.

There were 288 tracts with low to moderate
population density. Figure 3 is a frequency dia-
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FIGURE 3. Low to moderate density asbestos-excess cancer
frequency diagram.
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gram obtained by plotting the variate asbestos
exposure in fibers/liter (indicated as “gross mean”
in the figure) on the x-axis and the variate ob-
served minus expected (i.e., excess) white male all
digestive site per tract cancer on the y-axis (I).
One census tract whose coordinates are shown
enclosed in an editing rectangle appears to have
either an extremely low observed cancer morbid-
ity or an extremely high expected cancer morbid-
ity. The position of the point that represents this
tract implies that, were this tract to be removed,
the Pearsonian correlation between the X and Y
variates would be reduced. Nevertheless, despite
the removal of this point, and much more impor-
tantly the removal of all high-density tracts from
congideration, the correlation between asbestos
exposure and excess cancer morbidity variates is
0.194. Even for a one-sided test, the a level for the
null hypothesis of no association would have to be
smaller than 0.005 for one to accept the null
hypothesis in this case. Thus one can be reasona-
bly sure that the exclusion of highly populated
tracts from the original study of Cooper et al. (1)
would not change the study’s principal finding of
a significant relationship between waterborne as-
bestos exposure and digestive tract cancer. It
might be noted that the correlation between as-
bestos exposure and excess morbidity for the en-
tire data set of low, medium, and high-density
tracts is 0.241.

Regression Studies

In a previous study (3), nonparametric regres-
sion procedures were applied in order to study the
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FIGURE 4. Frequency diagram after removal of outliers.

shape of the dose-response curve associated with
the asbestos exposure-cancer excess morbidity re-
lationship. In this section it will be demonstrated
that the previously observed linearity of the dose-
response curve seemns to persist for low to moder-
ate exposure levels and low to moderately popu-
lated tracts.

Following the approach used in Tarter (3) as a
preliminary to the analysis of the 287 low to
moderate density census tracts described by Fig-
ure 4, the margins between the leftmost and
rightmost data points and the endpoints of the
interval of estimation were reduced. This opera-
tion was performed for the purpose of taking
advantage of the periodic nature of Fourier series
nonparametric representation. The effects of this
margin reduction are shown in Figure 5, which
can be thought of as an enlargement of Figure 4.

The conventional least-squares fitted regres-
sion line obtained from the 287 low to moderate
density points is shown in Figure 6, as are the
95% confidence bands associated with this line.
These bands enclose a region within which, pro-
vided certain basic assumptions are satisfied (4),
one is 95% sure that the true dose-response curve
is contained. The fact that no horizontal, i.e., null
relationship, line is contained within the confi-
dence bands is the graphical equivalent of the
dose-response significant relationship described
in the previous section.

Unlike the parametric regression line shown in
Figure 6, nonparametric regression procedures do
not rely on the initial assumption that the dose-
response curve conforms to any particular func-
tional relationship e.g., line. However, the flexi-
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FIGURE 5. Margin-reduced frequency diagram.
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FIGURE 6. Regression line with confidence bands.

bility inherent in nonparametric methodology
makes it extremely difficult to obtain useful esti-
mates within subregions where data points are
sparsely distributed. Approaches that can be used
to augment conventional procedures and effec-
tively deal with sparse-rich data mixtures are
described by Breiman et al. (5), Tarter (6), and
Bean and Tsokos (7).

Figure 7 is a contour diagram that illustrates
the uneven distribution of asbestos exposure-ex-
cess cancer morbidity data. To obtain Figure 7 a
generalized three-dimensional histogram was
constructed above the gross mean asbestos expo-
sure and excess digestive cancer sample space.
This estimated frequency surface was then sec-
tioned parallel to the sample space to produce the
contours, i.e., terraces, isopleths, shown in Figure
7. The three outermost contours correspond to loci
of points whose estimated relative frequency is
exactly 30% of the modal frequency, i.e., the most
common single comhbination of exposure and ex-
cess morbidity.

Naturally, the nonparametric regression curve
shown in Figure 8, which was obtained from the
same estimated bivariate frequency used to ob-
tain Figure 7, exhibits a highly irregular pattern.
The procedure used to obtain this curve has been
described in Tarter (8).

To increase the resclving power of the nonpara-
metric estimation procedure, a technique was em-
ployed that increases the second moment of all
density components in the x-direction but that
leaves all other distributional characteristics un-
changed. This procedure is a variant of a spectral
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FiGURE 7. Contour diagram showing sparse-rich data distri-
bution.
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FIGURE 8. Nonparametric regression before smoothing.

analysis technique described by Medgyessy (9)
and generalized to two dimensions by Stanat (I0)
and Tarter and Silvers (11). Figure 9 is the analog
of Figure 7 produced by smoothing in the x-direc-
tion, while Figure 10 is the analog to Figuare 8.
As depicted by the indicator or pointer line, the
nonparametric regression curve seems to reach a
plateau or horizontal component at coordinates X
= 27,500,000 fibers/L and ¥ = 0.51 excess cases
over a 6-yr period per census tract. In other
words, when only the low to medium density
tracts are considered, there is no statistical evi-
dence that a change of exposures to any value in



ASBESTOS, CANCER AND POPULATION DENSITY 83

22.58 MEAN
b
4 g
F
3
3 L
L
2 ?
— g
%\\ /.'%
)
-.42 "‘\9\ B/ ! 2 ?—.
J/l-l/
— o
- =
-16.17 -3
~.41E%6 .6OE+T . L41E+8
FiGURE 9. Equiprobability contours after smoothing.
22.58 S5 SEAN
o
4 7
Fl
3 A
L
L
2 o]
]
I
1 3
1
1 AnhAh g saasn !
AN N U TPy FYTLLLL | hassaan Y
T LTS Ll 3
-1
1.
M
s Q
-3
-16.17
~,41E+6 .60E-7 ! .4 E+8

FIGURE 10. Nonparametric regression after smoothing.

excess of 27,500,000 fibers/L. will increase the
estimated dose-response curve to more than 0.51
excess cases. This finding is of course far from
surprising, since there are so few high-exposure
tracts among the 287 tracts with low to medium
population density.

By using procedures described by Tarter (3),
benchmark data confirmation procedures were
applied to check whether the statistical methods
used to obtain Figure 8 could have influenced the
ramp as opposed to step i.e, diagonal as opposed to
horizontal shape of the nonparametric regression
curve. These procedures tend to confirm that not
only is the relationship between waterborne as-
bestos level and excess cancer statistically signifi-

cant for the low to moderate population density
subsample, but there exists concomitant varia-
tion (72) between these two variates up to the
point X = 27,500,000, ¥ = 0.51. When nonpara-
metric regression procedures other than that used
to obtain Figure 8 were applied to these data (13),
the same slight but discernible concomitant in-
crease in Y with an increase in X less than
27,500,000 fibers/L: was observed.

Residual and Partialling Studies

The most straightforward and elementary pro-
cedure usually used to remove the effects of a
single underlying or nuisance variable is of
course residual linear regression or its near
equivalent, partial linear correlation. One can
view this procedure in terms of a process that
involves the following two basic steps. (1) One or
both variables to be partialled are used as re-
sponse or dependent Y variates, and the variate Z
whose effect is to be removed is fitted (usually by
least-squares methods) to ¥. Most commonly_a
regression slope B is obtained such that Y and BZ
have maximum correlgtmn Up to a constant,
usually denoted by a, pZ ‘explains” as much of
the variation of Y as is possible by any linear
combination a + BZ (2) The residual ¥ - ﬁZ is
used to replace the response variate Y, and in
some instances the same procedure involving a
second value of B is used to find the residual of
principal independent variable X and nuisance
independent variable Z. For the problem at hand,
Y represents excess cancer morbidity, X asbestos
exposure level, and Z population density. The
variate Y — [(Z is sometimes interpreted as that
part of Y that has not been “explained” by the
variate Z (14).

For the 426 original census tracts of Cooper et
al. (I), Figure 11 shows the result of applying the
above residual regression technique. To better
interpret this figure, a code has been used in our
GRAFSTAT program (15-18), which on the right-
hand vertical column specifies B*Z22 A*Z1 ALL
DIGESTIVE WMO. To interpret this graph leg-
end, note that the basic Y variate was the ALL
DIGESTIVE site white male observed (hence
WMO) per census tract number of cases per 6-yr
period. The prefix A*Z1 designates that the A
(linear or additive) transformation has been ap-
plied to the Z1 variate ALL DIGESTIVE WME,
where the last “E” designates that it was the
expected number of cancer cases that was substi-
tuted for the observed cases to form, after sub-
traction from its WMO counterpart, the basic Y
variate, excess morbidity.
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FIGURE 11. Standard partialled frequency diagram.

The outer prefix B*Z2 designates that after the
variate excess morbidity had been formed the
least-squares residual {transformation B} was
used to obtain that part of the A*Z1 ALL DIGES-
TIVE variate that was not linearly explained by
the Z2 variate, population density.

A comparison of Figures 11 and 3 shows a very
close correspondence between the B transformed
complete data set and the untransformed low to
medium density data subset at all but the right-
most column of data points. The same lower left-
hand corner putative cutlier is present in these
two figures, and the correlation between the two
variates is 7 = 0.171, which for a sample of size n
= 426 is significant at the ¢ = 0.01 level.

It should be mentioned that we have repeated
all the experiments described in this paper with
the X variate gross mean asbestos exposure ad-
justed for population density by the same tech-
nigue used to adjust the Y variate, morbidity. For
ease of interpretation, experiments invelving a
partialled or residual Y variate and an unpar-
tialled (origial) X variate will be presented here.

Data with the single lower leftmost putative
outlier removed from the file were used to obtain
Figure 12 and an associated correlation of r =
0.171.

Conditional Probability Integral
Partialling

The partialling or residual approach described
in the preceding section has the advantages of
being well studied and easily interpreted pro-
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FIGURE 12. Partialled frequency diagram after removal of
outliers.

vided certain initial specifications or assumptions
are satisfied. The so-called “problem of specifica-
tion” (19) underlies a considerable literature usu-
ally denoted by the terms nonparametric, model-
free, or curve estimation. Hence, it seems very
reasonable to consider nonparametric alterna-
tives to simple linear-residual analysis.

As will be described later in detail, the variate
population dengity has a highly nonnormal and
skewed distribution. Hence, the first of the wide
variety of model-free approaches applied involved
a technique known as a conditional probability
integral transformation (20, 21) whose effective-
ness is minimally affected by distributional speci-
fication.

Unfortunately the price paid for generality is a
certain difficulty in interpretation. The variate
1¥22 A*Z1 ALL DIGESTIVE WMO, where the
letter I designates that the conditional probabil-
ity integral information (CPIT), has been applied
to remove the effect of population density, has a
correlation of » = 0.133 with the asbestos expo-
sure variate, as shown in Figure 13. It is interest-
ing that the positive correlation persists despite
the drastic nature of the CPIT transform. How-
ever, it is too early in the study of the CPIT
method to accurately assess the statistical signifi-
cance of the correlation in this case.

Parametric-Nonparametric
Hybrids

Two approaches were used to take into account
the skewed nature of the density variate and yet
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quency diagram.
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FIGURE 14. Partialled and ranked data.

obtain a result more easily interpreted in terms of
statistical significance than the result described
in the previous section. The first involved a com-
monly used nonparametric approach based on the
rank transformation (22), and the second the lo-
garithmiec transformation (3).

The number 7 shown in the Y axis label of
Figure 14 designates the seventh GRAFSTAT
data transformation option, normalized rank or
score (4), For a fixed value of nuisance variable Z,
e.g., population density, this option assures that
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FIGURE 15. Partialled and log transformed data.

the order between any two transformed values
matches that of any two untransformed values,
and that the distribution of the transformed score
is approximately standard Gaussian which,
among other things, guarantees that the variate’s
distribution is no longer skewed. The correlation
in this case is r = 0.143.

It should be pointed out that although the dis-
tribution of both the 7*A*Z1 ALL DIGESTIVE
WMO variate and the 7*POP DENSITY variate
can now be treated as if they were Gaussian, the
joint distribution of ¥ and X need not be bivariate
normal. Nevertheless, as described by Tarter and
Kowalski (21), the use of the normalized score
transform does seem to be useful in a wide variety
of contexts with the proviso, as suggested by the
Figure 14 Y variate prefix B*Z1, that the simple
least-squares difference between the normalized
variates is sufficient to remove all density effect.

To obtain Figure 15, the variate log POP DEN-
SITY was used in place of the ranked variate
7*POP DENSITY. The similarity between Figure
11 and Figure 10 and that between the corre-
sponding correlations of r = 0.157 and r = 0.143
suggests that in this case the correlation is highly
robust with respect to changes in the X and ¥
variate individually. The difference between the
above correlation and the correlation associated
with the CPIT I transformation suggests that the
relationship between the X and Y variates may
be highly complex. Ome possible cause of this
complexity could be the existence of disjoint dis-
tributional subcomponents for either the morbid-
ity or population density variate.
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Univariate Investigation of the
Population Density Variate

Figure 16 is a histogram constructed from the
426 census tracts. The variate whose density is
estimated by this histogram is the logarithm of
the per-tract population density. Figure 17 is a
nonparametric kernel-Fourier series estimator
(23), which suggests that the gap between the
leftmost and second-leftmost mode of the histo-
gram in Figure 16 is not an artifact traceable to
sampling variation. This brings into question the
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FiGURE 16. Log population density histogram.
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low to moderate population density homogeneity
that underlies the analysis.

Study of Non-San Francisco
Tracts

Because of the complexity of the population
density variate, it was decided to repeat the in-
vestigation described above after excluding tracts
within the city limits of San Francisco. The rela-
tionship between the basic asbestos exposure X
variate and the observed per (non-San Francisco)
tract white male all digestive organ morbidity is
described by Figure 18. The correlation between
these two variates is r = 0.136. (Here sample size
n = 323, i.e., there were 323 non-San Francisco
tracts.)

Once the Z1 variate, expected morbidity, was
subtracted from the observed morbidity, Figure
19 was obtained. Now, however, the correlation
between X and Y has dropped to the nonstatisti-
cally significant value of r = 0.05. Thus, one can
be reasonably sure that the significant relation-
ship between asbestos and cancer is largely at-
tributable to those low to moderately populated
tracts located in San Francisco. Tentative find-
ings have already been published involving sev-
eral San Francisco tracts (24) which suggests that
there may be data collection or spurious correla-
tion artifacts associated with a particular San
Francisco subregion.

To carefully study the non-San Francisco tracts,
the lower left outlier was again removed as shown
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Figure 18. Non-San Francisco observed cancer-asbestos ex-
posure frequency diagram.



ASBESTOS, CANCER AND POPULATION DENSITY 87

23.01 MEAN
5
T A A
2 1k2 ez
b
227" - R
5’3 o ' . L
70 2ol 21 i1 92 3 1
=T IR f %
g g;_lz P B 1o 13
[ ] 1 !
2 2%z H
1T .
L y
E
-y
-5
o
™
o]
1
-42.79
=.51E+7 .36E+7 J46E+8

NPTS = 323 OF 323

FIGURE 19. Non-San Francisco excess cancer-asbestos expo-
sure frequency diagram.

20.57 SFE.AN
A
1 -
N 2
' [
2 1§3 A
! y
' 1 1
i 2 b
9 1 1 1
ciafi
G 3 ' 1 .
M7l o1 ' 2 2 E
x ab 1 1 2 3 1 T
-.60 LS BLYi T 1
29 2 B 1 hy
R2[ 7 1 1 (] ) e
4 3t
8
23 1
3 22 1
1 o
! :
1 ]
1
A
-19.83
-, 51E+7  .37E=7 J4BE+E

NPTS = 322 OF 322

FIGURE 20. Frequency diagram after removal of outliers.

in Figure 20 and the tracts were divided into two
groups, the first containing tracts with less than
3.6 million fibers/liter exposure and the second
containing the remaining moderate to high expo-
sure tracts (3.7 million is the mean exposure
associated with the non-San Francisco tracts.)
When modern curve estimation procedures
were applied to estimate the excess morbidity
frequencies for these two data subsets, Figure 21
was obtained. Despite the fact that the methods
used were completely automated and model-free
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FI1GURE 21. Estimated excess cancer frequency curves for
high (Y) and low (X) exposure subpopulations.

and the high exposure excess morbidity density
was estimated from only 45 observations (since
most high expesure tracts lay within the bounda-
ries of San Francisco), Figure 21 shows two
curves that not only have almost exactly the same
mean but the same variance and bell-like shape.
The curve traced with the symbol X corresponds
to the low-exposure, while the curve traced with
the symbol Y describes the high-exposure group.
When the cumulatives corresponding to Figure
21 densities were constructed, the maximum dif-
ference between these curves was found to be
0.083. The « = 0.05 critical value for the Kolmo-
goroff-Smirnov test statistic for the sample sizes
involved is very close to 0.21, which is many
magnitudes greater than the estimated cumula-
tive difference. Hence, if there is a causal rather
than spurious association between waterborne
asbestos exposure and digestive cancer morbidity,
the existence of this relationship using Bay Area
data can only be ascertained by careful study of
differences between the San Francisco subpopula-
tion and the subpopulations of other locations.

The Within-San Francisco Study

If one performs a study opposite to that de-
scribed in the last section and restricts one’s at-
tention only to San Francisco tracts, Figure 22 is
obtained. The observed correlation in this case is
negative (r = —0.114) although not significant,
since there are relatively few San Francisco
tracts (n = 99).
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FiGURE 23. Use of ranking transformation after morbidity
variate construction.

Further Evidence for
High-Exposure Distributional
Subcomponents

One study has provided very suggestive evi-
dence that the high asbestos exposure subpopula-
tion contains two disjoint subcomponents. To ob-
tain Figure 23, ranking transformation 7 was
applied after the excess cancer morbidity variate
was constructed. The use of transformation 7 to
some extent corrects the blurring induced by the
possibly highly complex interrelationship be-

1.44

W
YislF

L0035

@) |

1
w
Fs Eco

-3.262
-3513E+7 J121E+8 461 E+8
F1GURE 24. Equiprobability contours using ranked data.
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FiGURE 25. Nonparametric regression using ranked data.

tween observed and expected morbidity. Now
when the data shown in Figure 23 are parialled,
i.e,, the residual of Z1 variate ranked density is
constructed and when the smoothing technique
described above is applied, the contours shown in
Figure 24 was obtained. Much more importantly,
when a nonparametric regression based on den-
sity modes is executed, Figure 25 is generated. As
noted by the pointer shown in this figure, the
high-exposure subpopulation itself seems to be
made up of two distinct subpopulations for asbes-
tos exposure levels above 20 million fibers/L.
Since almost all high-exposure tracts were lo-
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cated in San Francisco, it seems that the relation-
ship between waterborne asbestos exposure and
excess digestive cancer morbidity may be trace-
able to a greater proportion of tracts associated
with code 1 as shown in Figure 25 than tracts
associated with code 2, i.e., the bimodal density of
morbidity has a higher mode associated with high
than with low morbidity as shown in Figure 25,
where the number 1 is used to represent the
higher and number 2 the lower mode. Hypotheti-
cally, suppose that there exist two types of census
tracts, type 1 (higher mode) and type 2 (lower
mode), the former with a greater and the latter
with a lesser probability of an individual con-
tracting digestive cancer. It appears from Figure
25 that the high asbestos exposure subgroup
seems to have a greater preponderance of type 1
individuals than does the low to moderate expo-
sure subpopulation. Of course, as suggested in the
previous two sections, this finding may not have
anything to do with a causal connection between
asbestos and cancer. It may simply be a coinci-
dence that type 1 tracts tend to be clustered in
that part of the Bay Area that happens to have
high exposure levels.

Despite the above caution, it should be pointed
out that the rather striking nature of Figure 25
was only uncovered after a partialling technique
was applied to remove the effect of population
density. Thus, rather than being an artifact trace-
able to the underlying effects of population den-
sity, the relationship between asbestos levels and
excess cancer morbidity was brought more clearly
into focus once population density was taken into
account.
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