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and Temporal Patterns

by Kenneth G. Manton,* Eric Stallard,* John P. Creasont

and Wilson B. Riggant

There are a number of technical and statistical problems in monitoring the temporal and spatial variation
of local area death rates in the United States for evidence of systematically elevated risks. An analytic
strategy is proposed to reduce one of the major statistical concerns, i.e., that of identifying areas with
truly elevated mortality risks from a large number of local area comparisons. This analytic strategy involves
two stages, The first is a procedure for examining the entire distribution of local area death rates instead
of simply selecting high risk “outliers.” The second is the development of an analytic procedure to relate
the temporal changes in the cross-sectional distribution of local area death rates to models of the disease
process operating within the populations in those areas. The procedures are applied to data on cancer
mortality for the 3050 counties (or county equivalents) of the United States over the period 1950 te 1978,
A number of striking mortality paiterns, both within the entire United States and within various regions
and states, are identified. For example, perhaps the most persistent finding was that the risk increases in
the death rates for respiratory cancer mortality were due to a “‘catching up” of nonmetropolitan county

mortality rates with metropolitan area mortality rates.

Introduction

Frequently, geographic patterns of chronic disease
death rates are monitored to identify areas with
significantly elevated mortality risks (Z). Once such
areas are identified, more intensive investigations can
be fielded to determine what life style, occupational, or
environmental factors may have contributed to the local
area elevation of rates (2).

Such a strategy is both feasible and highly cost-
effective because the vital statistics system is an
ongoing component of government, and all areas of the
country are monitored for all causes of death. Though
the basic strategy has proven highly effective, there are
a number of analytic issues that can restriet the utility
of the approach. For example, the quality of death
certificate diagnoses varies both with the identity of the
diagnosis and with the level of detail and specificity of
the diagnosis. Thus, we must be aware of such variation
in selecting diagnostic categories for analysis.

In this paper, a second set of analytic issues is
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addressed. These issues arise because, in monitoring or
sereening the death rates for a number of different
diseages in the 3050 counties (or county equivalents) (3)
of the United States for up to 30 years, it is difficult to
determine if a particular elevated (or depressed) pat-
tern of cause-specific death rates has occurred by
chance. Indeed, the large number of death rates makes
it operationally difficult to systematically evaluate the
set of rates for patterns. We propose a two-stage
analytic strategy to perform this evaluation. The first
stage is descriptive and involves examining the distribu-
tion of death rates across geographic areas and demo-
graphic variables to determine if nonrandom patterns
exist and to determine if the patterns in the distribution
of rates persist over different groupings of these local
area rates. The purpose of this part of the overall
geographic analysis could be deseribed as “pattern
recognition”

The second stage of our analysis involves assessment
of the temporal variation of death rates within local
areas (e.g., eounties) to ascertain characteristics of the
disease dynamics within the local area population and to
relate local patterns to the disease dynamics in larger
population groups (e.g., national or state populations).
To accomplish this we employ detailed models of county
level death rates developed from epidemiological and
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biomedical theory and auxiliary data (4). These analytic
models facilitate the tracking of temporal changes in
mortality risks for individuals or cohorts. The primary
benefit of analytic models describing cohort patterns of
risk is that they increase our ability to sereen out chance
geographic variation in death rates by relating changes
in the cross-sectional distribution of those rates to
systematic age, period, and cohort changes in mortality
risks. A second benefit is that such models provide a
more realistic basis for projecting mortality trends over
time and space (5).

The presentation of the analysis is organized around
the three goals of this paper. First, we have examined
changes in the distributions of cancer death rates for
U.S. counties, both for the country as a whole, and for
select states, to determine if there are persistent spatial
and temporal patterns of variation. In this assessment
we found a number of highly significant geographic
patterns in the rate of change of county death rates. Of
particular interest were metropolitan and nonmetropoli-
tan differences in the rate of change of male respiratory
cancer death rates. Second, we applied more detailed
cohort models to analyses of county, state, and regional
variation in site specific and total cancer death rates, In
this type of analysis we were able to relate temporal
changes in the cross-sectional distribution of cancer
death rates to different cohort patterns of risk in these
areas. Third, we evaluated the utility of the analytic
models for identifying real deviations in cancer risks
and for describing the mechanisms generating those
risks.

Data

The data that we evaluated in this report are county
level vital statistics data on cancer mortality and county
level census data for the period 1950 to 1978. Using
these data we can calculate age-, race-, and sex-specific
death rates for each year in the period 1950 to 1978.

In particular, age-, race-, and sex-specific mortality
counts were derived for 35 cancer sites for each of the
3050 counties {or county equivalents) for each year 1950
to 1978. The counts were prepared from computer
tapes, prepared by EPA, which contained the individual
death certificate diagnoses used by Mason et al. (1) for
the period 1950 to 1969, and from NCHS public release
tapes for the period 1970 to 1978, These were matched
with (a) corresponding population counts from the 1950,
1960, and 1970 censuses and (b) corresponding popula-
tion estimates obtained by linear interpolation between
the censuses. For the period after 1970, population
counts were taken from special post-censal estimates
produced by the U.S. Bureau of the Census.

Rates of two types were generated from these data.
First, direct age-standardized cancer death rates were
produced for each of four race—sex groups for all U.S.
counties. In all cases, the standard population used was
the total U.S. population for 1970. These rates were
caleulated for three intervals: 1950 to 1959, 1960 to
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FiGUrRE 1. Data structure for defining cohort rates.

1969, and 1970 to 1978. For the computation of the
frequency polygons exhibited below in Figures 2-7,
these rates were weighted by the size of the population
in each county for each time interval so that the
weighted distribution of the rates reflects the distribu-
tion of the total population by risk levels.

The second rates calculated were sets of cohort
specific death rates for each year in the period 1950 to
1977. Because data were available on a single year of
date and single year of age basis, these cohort rates
could be used to track specific cohorts over time. To
understand how the cchort rates were caleulated,
consider Figure 1.

In Figure 1 we have presented a portion of an
age-by-date matrix. Here we show two cohorts (aged 30
and 35 in 1950) followed for a four-year period (1950 to
1953). The cohort rate for each year is actually the
average over a group of five single-year-of-age catego-
ries. The five-year groups are crogs-temporally tracked
on a single yvear basis. Thus, the death rate calculated
for the first cohort actually represents the average
death rate for persons 28 to 32 years of age in 1950. One
year later, in 1951, this group was 29 to 33 years of age.
We take the average death rate in each five-year group
to represent the death rate at the middle age.

A total of 45 birth cohorts born from 1878 to 1922
were tracked for 28 years. From these data, sets of age
{a)- and echort (¢)-specific cancer death rates for nine
five-year cohort groups aged 2832, 33-38, . . ., 68-72in
1950 were calculated from the corresponding death D
(a,¢) and population P{a,c) counts as indicated in Figure
1, i.e., by using the formula:
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where ¢ = 1880, 1885, . . ., 1920 and, in 1950, a = 30, 35,
..., 70, Thus, these cohort death rates utilize all of the
available data and provide rate estimates smoothed over
the five-year-of-age window.

Descriptive Analyses

In the first stage of our analysis we examined
temporal changes in the county-population weighted
distribution of cancer death rates both in the U.S. as a
whole and in select states. This can be illustrated in
Figure 2, where the percent distributions of males in
the U.S. white population at 21 levels of the age-
adjusted death rate for all types of cancer are plotted
for three time periods: 195059, 1960-69, and 197078,

In Figure 2 we see that the maximum cancer death
rate for any U.S. county for any of the three time
periods is nearly 270 per 100,000, This can be compared
with an age-adjusted death rate for all cancer mortality
of 180 per 100,000 for males in the U.S. white popula-
tion in 1977. Thus the highest cancer death rate for a
county is 50% higher than the national rate in 1977. In
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Ficure 2, County-population weighted distributions of age-ad-
justed death rates for all cancer mortality among white males in
the 3050 counties of the United States.

terms of the modal rate we see that there has been an
increase from about 160 per 100,000 to about 190 per
100,000 with the proportion experiencing this higher
modal value increasing from 16 to 22%.

While there has been only a small increase in the
proportion of the male population with cancer death
rates between 230 and 270 per 100,000, we see that the
maximum male death rate has not increased with time.
The proportion of the male population with cancer
death rates less than 120 per 100,000 has dropped
greatly. The net effect of these changes is that the
distribution of male cancer risks over U.S. counties has
appeared to shift to the right and become more “peaked”
as more of the male population reaches death rate levels
between 170 and 230 per 100,000. Furthermore, the
1950-1959 plot shows evidence of an underlying second-
distribution at about 120 per 104,000. This does not
appear in the 1970-78 plot. This suggests that recent
inereases in U.S. white male cancer mortality have been
a result of homogenization of cancer risks over local
areas and not due to an overall upward displacement of
the distribution. This suggests that cancer rates for
certain local areas have increased rapidly over the
28-year period while the cancer death rates for other
high risk areas have remained relatively static near the
very high levels initially observed in 1950-59.
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Fiaure 3. County-population weighted distributions of age-ad-
justed death rates for all cancer mortality among white females
in the 3050 counties of the United States.
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The corresponding county-population weighted distri-
butions of age-adjusted death rates for all cancer
mortality for females in the U.S, white population are
presented in Figure 3.

There are s number of clear differences between the
male (Fig. 2) and female (Fig. 3) distributions, First of
all, the maximum female cancer death rates for counties
are not as high as for males (e.g., 196 per 100,000 vs.
270 per 100,000). Second, the temporal increases in
female cancer death rates are far less than for males.
Indeed, there is little evidence in Figure 3 of a
significant decrease in the proportion of the female
population at the lowest rates (less than 130/100,000)
over the three time periods, while the proportion of the
female population at the highest levels of risk has
actually decreased. The result of these changes is that
the variance of the female distribution has decreased,
and the distribution has become more peaked.

The differences between Figures 2 and 3 can be
examined further by decomposing changes by cancer
site. One type of cancer that has been argued to
underlie sex differences in temporal trends at the
national level is respiratory cancer. The sex specific
population distributions of respiratory cancer among
whites in the U.8. are shown in Figures 4 and 5.
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FIGURE 4. County-population weighted distributions of age-ad-
justed death rates for respiratory cancer mortality among white
males in the 3060 counties of the United States.
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FIGURE 5. County-population weighted distributions of age-ad-
justed death rates for respiratory cancer mortality among white
females in the 3050 counties of the United States.

The male and female respiratory cancer patterns are
very different. For males there appears to be a reason-
ably constant upward shift in the distribution with
time. There is also a tendency for the distribution to
become more peaked with a greater proportion of males
at the modal value. This parallels the pattern observed
for all cancer mortality for males. The respiratory
cancer mortality pattern for females is, however, quite
different from the female pattern for all cancer mortality.
For respiratory cancer, the variance of the female
distribution increases rapidly over time, with the popu-
lation becoming far more heterogeneous. This is appar-
ently so because the respiratory cancer mortality rates
for females were so low in 1950-59 that they were
truncated on the lower side. With time, the distribution
ghifted to the right but with different areas changing at
different rates so that the distribution flattened. This
contrasts with the pattern for all cancer mortality for
females, where there was no evidence of such a shift.
The changes for all cancer mortality paralleled the
changes for respiratory cancer mortality for males, but
not for females, because a much larger proportion of
total male cancer mortality is due to cancer of the
respiratory system.

The distributions for the nation are difficult to
interpret in detail because of the wide range of condi-
tions affecting local area cancer death rates. By focus-
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ing our attention on the distribution of county-popula-
tion weighted death rates for a somewhat smaller
aggregate (e.g., a state), we can better interpret the
distributions and their change with time. In particular,
there may be characteristics of particular local areas
that will index probable exposures to various types of
pollutants or to different life style factors {e.g., smoking,
diet). The selection of such areas based on likely
exposure differences provides us with a type of quasi-
experimental logic to determine if geographic differen-
tials in mortality risks are associated with exposure
patterns (2). Given that the death rates can be caleu-
lated for different demographic eategories, we can also
control for various life style and occupational differ-
ences. Yor example, the effects of smoking might be
assessed by comparing areas with high concentrations
of Mormons (who are typically nonsmokers) to other
areas. In a prior analysis this was done for Orleans
Parish, LA, and Salt Lake County, UT (4).

A major advantage of the longitudinal, area-specific
vital statistics data bases is that we can select areas
according to a logic that allows us to approximate a
retrospective or prospective type of analysis by using
the county population as our unit of study. For example,
by selecting sets of counties on the basis of exposure
factors, e.g., selecting counties with high levels of ship
building and counties without such industrial activity
(2), one can evaluate prospectively differences in the
pattern of change of rates in those areas. Alternatively,
in a fashion analogous to the logie of retrospective stud-
ies, we could select areas on the basis of the level of
their death rates and examine the distribution of ex-
posure factors for areas with different types of mortality
risks. In both cases, we could examine either cross-
sectional or cohort death rates. Some caution is war-
ranted, however, because the unit of analysis is ah area
population and not individuals. Thus, the use of such
rates only approximates a retrospective or prospective
logic because the population at risk can change due to
migration. 1t has been shown, however, that the general
effect of such movement is to diffuse risk differentials
due to exposure (6) and, hence, the strategy ought to
produce conservatively biased results.

To illustrate an analysis of death rates in a subgroup
of counties, let us consider the county-population
weighted distributions of age-adjusted death rates for
all cancer mortality for white males in Illinois (Fig. 6).

Here we see that a secondary peak in 1950-59 moved
to the right and merged with the primary peak in 1970—
78. Illinois was selected for indepth analysis because it
is a state with a major metropolitan area (Chicago) and
a large down-state nonmetropolitan population. The pri-
mary peak in lllinois represents the elevated cancer
risks in Chicago. It moves relatively little with time.
Clearly the “down-state” counties have, in effect, caught
up with the cancer risks in the Chicago area.

These rates can also be decomposed according to spe-
cific cancer sites. For example, in Figure 7, we present
white male respiratory ecancer death rates for lllinois
counties,
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Fieure 6. County-population weighted distributions of age-ad-
justed death rates for all caneer mortality among white males in
the 102 counties of Illinois,
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Ficure 7. County-population weighted distributions of age-ad-
justed death rates for respiratory cancer mortality among white
males in the 102 counties of Ilinois.
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The temporal changes in the distribution of male res-
piratory cancer death rates are of two types. First, the
secondary peaks in 1950-59 and 1960-69 have merged
with the primary peak in 1970-78. Thus the variance
of the distribution has decreased, i.e., the level of res-
piratory cancer risks over counties has become more
homogeneous. Second, the whole distribution shows a
marked upward shift.

Comparisons of the respiratory cancer death rate dis-
tributions for males for the U.S. and Illinois show some
similarities and some differences. The rapid increase of
the respiratory cancer risks is evident in both distri-
butions with a strong upward shift of the modal points
of both distributions. In the Illincis distribution, how-
ever, there is clearly a secondary peak at lower death
rate levels in 1950-59 whereas, in the U.S., though
there is an elbow in the distribution, there is no separate
peak. The bimodality of the distribution in Illinois shows
the effect of a state population clearly divided between
a large metropolitan area (Chicago) and the nonmet-
ropolitan remainder. In the U.S. the distribution does
not show such bimodality because there are many met-
ropolitan and near-metropolitan areas to define a
smoother gradient. A similar observation could be made
for total cancer mortality.

Cohort-Specific Analyses

The descriptive analyses presented above provide an
excellent sense of the nature of local area changes in
cancer death rates. However, these changes in the cross-
sectional distributions do not explicitly represent the
dynamices of the disease process in cohorts. We analyzed
these dynamics by using a model of cancer mortality
risks that has been found to well describe the age de-
pendence of cohort death rates for a number of different
chronic diseases. This model, the Weibull hazard model,
can also be related to the well known multistage/multi-
hit model of carcinogenesis due to Armitage and Doll
(7,8). This Weibull hazard function, modified to include
cancer latency (the time between tumor onset and elin-
ical expression), can be written in the form,

Ma, ¢) = a, (@ = D"F (2

where Mg, ¢) is the cohort death rate defined in Eq.
(1), o is a cohort-specific scale or proportionality factor,
¢ represents age, ! is an estimate of latency, and m is
a shape parameter. (In the Armitage-Doll model, the
m can be interpreted as the number of mutations needed
to Initiate a tumer; also a &, 1s an age invariant risk
constant which is proportional to the product of the m
annual mutation probabilities.)

In practice, Equation (2) often fails to predict cancer
death rates at later ages accurately (9). Therefore we
generalized Equation (2} to allow the mortality risks to
differ over individuals within each cohort. To represent
the effects of such risk heterogeneity on the age tra-
jectory of the cohort death rates, we define a, as the
average of individual risks, o, ., within that cohort. In

order to develop this heterogenecus population gener-
alization of the Weibull model fully, it is necessary to
make an assumption abeut the form of the distribution
of the «, .. We assumed that the o;, were gamma-dis-
tributed, i.e., they have the density function

_ Q¢ ¥ exp{_ C”-i,c”Bc}
flei) ‘( Be ) (50 )

withmeana = @,.s.andvariancep,’s,. This yieldsamodi-
fied form of the Weibulil function (16):

Ma,e) = ala - D" (1 + ala - /(ms)]  (4)

One can see that the effects of risk heterogeneity are
represented in Eq. (4) only through the gamma shape
parameter s,, which is seen from Eq. (3) to be the in-
verse of the squared coefficient of variation of the «; ..
The modified Weibull function in Eq. (4) is not unique,
however, in the sense that alternative assumptions about
the form of the distribution of the o, lead to alternative
modifications of the Weibull function. One alternative
suggested by Hougaard (71) is the inverse Gaussian
distribution which, like the gamma, is a member of the
natural exponential families. Another alternative, sug-
gested by Cook et al. (9), is the two- point susceptibility
distribution in which only some given fraction of the
population is susceptible to the initiation of a tumor.
We have investigated the implications of these two al-
ternative distributional assumptions and found that the
fitted parameter values are reasonably robust with re-
spect to those choices (12,13). Indeed, under comparable
parameterizations it may be shown that the two-point
distribution implies that s, declines over time (72), that
the inverse Gaussian distribution implies that s, in-
creases over time (13), whereas the gamma distribution
implies that s, is constant over time (14). Given that the
constancy of s, means that the coefficient of variation is
also constant over time, one can see that the gamma
distribution permits us to account for the effects of risk
heterogeneity in a parsimonious manner which repre-
sents a consensus of the other plausible alternative dis-
tributional assumptions.

We employ two additional assumptions to adjust Eq.
{4) for the effects of competing risks so that our model
may be fit to the set of eohort specific death rates ob-
tained by using Eq. (1). First, we assume that mortality
from the specific cancer modeled in Eq. (4) is inde-
pendent of mortality due to all other causes of death.
This is a standard assumption that is frequently made
to achieve identifiability in competing risk models (15-
18). For the present model, this assumption means that
the marginal hazard rate in Eq. (4) is equal to the con-
ditional hazard rate, given that each exposed individual
survives not only death due to the specified cancer but
also all other causes of death up to at least age a. Second,
because this conditional hazard rate obtains as the limit
of the expected death rate as the exposure interval tends
to zero, we assume that the conditional hazard rates at
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the midpoint of each 1-yr age interval provide satisfac-
tory approximations to the expected death rates for
those intervals. This assumption is standard and derives
from the work of Reed and Merrell (19).

Taken together, these two assumptions provide a
tractable method of adjusting for the effects of com-
peting risks. Furthermore, because the midpoint ap-
proximation refers to the conditional hazard rate, its
validity does not depend on the validity of the inde-
pendence assumption. It is useful to consider how vio-
lations of the independence assumption would affect
results derived from our model. This can be done be-
cause the heterogeneity model provides an appropriate
conceptual framework for considering the effects of de-
pendence among several causes of death (11,20,21). For
example, in addition to respiratory cancer, Klebba (22)
identifies 13 other diseases associated with smoking. If
each individual is characterized by a vector of disease
specific susceptibility constants, e.g., Peo,. =
(al,i.c’ reey al-l.i.c)
then the assumptions concerning dependence or inde-
pendence of the 14 diseases may be stated in terms of
the distribution of o, . and, conditional on «, ., the times
to death from each of the diseases may be assumed
independent. Practical considerations suggest that
models of dependence of the elements of «;,. be re-
stricted to the ease where these elements can be ex-
pressed as functions of additional covariates that are
available on an area and cohort specific basis. Other-
wise, if the elements of «,, are independently gamma-
distributed, then hoth the marginal and conditional haz-
ard rates for each disease will be of the form of Eq. (4),
as we have assumed.

The parameters of the gamma/Weibull function in Eq.
(4) can be estimated by using a Poisson likelihood fune-
tion based on the counts of the number of deaths and
the person vears at risk (10,23). For the Poisson func-
tion, the maximum likelihood estimates of A(a,c) for the
fully saturated model (i.e., same number of parameters
as observations) are precisely the observed death rates,
computed as in Eq. (1).

To generate more parsimonious descriptions of these
data, we parameterized Ala,c) as shown in Eq. (4) to
examine the variation of cancer death rates within local
area populations over age and time. This model was also
used to examine the geographic variability of the local
area rates. This was done by estimating the parameters
of the model for the nation, state, or region, and testing
to see if those parameters could satisfactorily be apptied
to a local area population. If the use of parameter es-
timates from larger population groupings did not cause
significant deterioration of the fit to the local area death
rates, then we employed the parameter estimates from
the larger populations. This, in effect, provided an em-
pirical test of the expected bias of the parameter esti-
mates for the larger population when applied to the local
population. Besides being one way of clearly defining
local areas that had mortality risks that were signifi-
cantly different from the larger population, it also helped

us to understand the structure and source of those
differences.

The fit of the model in Eq. (4) to U.S. cohort data for
white males is illustrated in Figure 8.

We see that the fit to the national cohort patterns is
quite good. The increase in cohort levels of risk for
younger cohorts is evident. It is also clear that the larg-
est increases in cohort risks occurred over the five oldest
cohorts (i.e., the birth cohorts 1880 to 1900). Conse-
quently, a search for risk factors to explain the recent
increases in respiratory cancer death rates should focus
upon factors which became elevated for these cohorts
at “susceptible” early ages. The likelihood that there
exists a set of most susceptible ages for exposure de-
rives from two observations: (a) the observation of en-
hanced susceptibility at certain ages to specific
carcinogens, e.g., the enhanced susceptibility to cancer
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FIGURE 8. Observed and predicted age-specific death rates for res-
piratory cancer mortality in the United States from 1950 to 1977
for nine white male cohorts aged 30 to 70 in 1950. The observed
death rates, indicated by the 9 sets of asterisks, were computed
by using Eq. (1). The predicted death rate functions, indicated by
the nine smooth curves, were computed by using Eq. (4) with the
maximum likelihood estimates of the cohort specific parameters &
and 8. and the pooled estimates of the global parameters m(=6)
and I(=20.1 years). See text for explanation.
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of persons aged 15 to 25 due to cigarette consumption
(24), and (b) the observation that carcinogenic expo-
sures at later ages do not often result in clinically man-
ifest diseases because of lengthy latency times, e.g., in
Peto et al. (25), the eventual clinical manifestation of
mesothelioma was five times as high if the initial ex-
postire oceurred at age 20 than at age 40.

In considering the role of such risk factors in explain-
ing cohort differentials in respiratory cancer mortality,
it needs to be emphasized that positive dependence in
susceptibilities te respiratory cancer and other causes
of death will yield progressively lower observed res-
piratory cancer mortality rates at older ages than would
occeur under independence (21). Because this form of
bias would affect the parameter s (which controls the
“downturn” in the curve at older ages: see Fig. 8) more
so than the parameter a (which controls the initial av-
erage level of the cohort hazard function), we expect
cohort comparisons based on & to be relatively more
ingensitive to violations of the independence assump-
tions. Hence, in the following we will restrict our within-
and cross-cohort comparisons to contrasts of the param-
eter a.

The cohort trends and differentials at the national
level are quite strong. Thus it would seem important
that analyses at the local area level be adjusted to reflect
the national cohort trends. The adjustment of local area
and state analyses for national trends can take one of
two forms. First, it is possible to impose constraints on
the parameters of cohort specific models estimated at
the local area level. Logically, since the national level
data provide much more precige estimates of parame-
ters, this would suggest that those parameter estimates
ought to be employed, unless a significant deterioration
of fit can be demonstrated in using those parameters
for a given area. This would be equivalent to using the
model to demonstrate a statistically significant bias in
applying the parameters estimated in the national model
tothe local area data. The second approach is to compare
the & for specific cohorts estimated from the national
and local area data, but with the parameters m, I, and
the ratio B, = /s, [see Eq. (3)] constrained to their
national values in the local area estimation phase. Ap-
plying the constraint to §, rather than to s, in Eq. (4)
means that the ratio of the local area estimate of &, to
the national estimate of &, provides a measure of the
age-independent relative risk of that cohort in the local
area vis-a-vis the national cohort.

This second type of model can be used to make several
types of comparisons. First, it can be used to make
cohort risk comparisons within a state. For example,
we saw in Figure 4 that U.S. white male respiratory
cancer death rates inereased in the period 1950-78. We
also can see in Figure 8 that there is a tendency for
these rates to increase for younger cohorts. In Figure
9 we present a plot of the ratic of eohort- specific afor
respiratory cancer for white males in [llinois, separately
estimated for the entire state, for Cook County, and for
all other counties in the state, to the corresponding &-
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FiGURE 9. Cohort-specific relative risks of respiratory cancer mor-
tality among white males in Illinois and in select counties in Illinois.
Relative risks computed by using cohort specific risks of respi-
ratory cancer mortality among all white males in the United States
as the standard.

estimates obtained from the national data. The relative
deviation of the subarea &, from the national value is
plotted against the vertical axis of the figure while the
year of birth of the cohort is plotted against the hori-
zontal axis.

In Figure 9 we see that the state of Illincis is very
near to the U.S. in terms of cohort specific levels of
respiratory cancer mortality, However, we also see that
this is a product of two very different trends. First, for
Chicago (Cook County), we see that the oldest cohorts
were much elevated with respect to the national values
but that the differential disappears for younger cohorts.
In contrast, the “down-state” counties initially had lower
than average risks, in comparison with either the state
or the nation. However, for younger cohorts the dif-
ferential again disappears. This suggests a mechanism
that may underlie the two aspects of change of the cross-
sectional distribution of county specific respiratory can-
cer death rates. It suggests that, for birth cohorts up
to about 1895, the major metropolitan area of Illinocis
had elevated risks. Thereafter, the metropolitan and
other areas were quite similar. This explains why the
secondary peak of the county specific respiratory cancer
death rates observed in Illinois in 1950-59 and 1960—
69 disappeared in 197078, and the variance of the dis-
tribution decreased. The upward shift of the rates with
time is probably reflective of the general increase in the
level of respiratory cancer death rates in younger co-
horts. Such a progression is not manifest in Figure 9
because the relative risks have, in effect, had the na-
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tional trends (i.e., increases in respiratory cancer mor-
tality risks in younger cohorts) removed.

A second interesting comparison of cohort trends
within a state can be made for the state of Alabama.
This is illustrated in Figure 10.

Here the target counties are those around Birming-
ham. We see that the state and target county mortality
risks for older cohorts are much below (20% below for
Birmingham and 35% below for the state) the national
values. We see that, by the birth cohort of 1890, the
Birmingham cohort mortality risks exceed (by nearly
30%) those of the nation. We also see that the mortality
risks for the remainder of the state begin to converge
with those of Birmingham slightly later (i.e., beginning
with the 1895 birth cohort). By the 1910 birth cohort,
even these lowest mortality risks exceeded the national
values.

It is interesting that similar types of patterns emerge
for other southern states while the reverse exists for a
number of major northeastern states (e.g., New Jersey,
New York, Pennsylvania). In these northeastern states
both the nonmetropolitan and metropolitan components
are elevated for the clder cohorts. Gradually, however,
for younger cohorts the differentials both within state,
and between the state and national rates, decrease.

We have shown how cohort trends can be compared
between target counties and the remainder of the state
and can be compared in a way that has the national
trends removed. Though such a decomposition of the
cohort specific mortality risks is of interest in explaining
eross-temporal changes, it does not indicate the absolute
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Figurg 10. Cohort-specific relative risks of respiratory cancer motr-

tality among white males in Alabama and in select counties in
Alabama. Relative risks computed by using cohort specific risks
of respiratory cancer mortality among all white males in the United
States as the standard.

levels of risk expected. This can be studied by exam-
ining the size of the & for different cohorts. These &
represent the age-independent increment in risk in our
proportional hazards type of Weibull model. This es-
tablishes the absolute level of risk because, for a given
tumor type, all cohort curves are assumed to have the
same intrinsic curvature (i.e., all cohort +m are assumed
equal).

In Figure 11 we compare the cohort changes in the
level of risk for the U.S. and four states (Alabama, New
York, Louisiana, New Jersey). The dashed line for the
U.8, indicates the trend in the increase in the absolute
level of cohort risks which we removed in Figures 9 and
10. We see, for example, that there is about a fivefold
increase in & from the 1880 to 1920 cohorts. This means
that the risk level at any given age will be five times
higher in the 1920 eohort. Thus the trend removed in
the earlier plots represented about a 12.5% increase in
respiratory cancer risks for each year of cohort age. It
is interesting to compare the trends in the four states
with the national trend. We see that the two southern
states have a much faster rate of increase in respiratory
cancer mortality risks than for the U.S. as a whole.
What is perhaps surprising is that the two northeastern
states have a less rapid increase in risk with cohorts
than the U.S. The regional differences may reflect the
higher proportion of rural populations in the southern
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FiGure 11. Cohort-specific risks of respiratory cancer meortality
among white males in the United States and among white males
in four select states. Absolute levels of risk measured in o units.
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states and the faster increase in risks for those areas.

The methods of cohort-specific analysis of site specific
cancer mortality risks can also yield insight into the
temporal trends of other cancer types. For example, so
far we have concentrated on studying factors respon-
sible for the change in the distribution of respiratory
cancer death rates. Another important type of cancer
that could be examined is stomach cancer. Stomach can-
cer might be examined because the etiological factors
involved in its initiation are potentially quite different
from those involved in respiratory cancers. The cahort
plots for stomach cancer, in the U.8, and five states
(Illinois, New York, Michigan, Pennsylvania, New Jer-
sey), are provided in Figure 12.

Note that the size of the &, for stomach cancer are
much larger than those for respiratory cancer. This is
because the Weibull shape parameter (m) is greater for
respiratory cancer (m = 6) than for stomach cancer (m
= 4), i.e., the stomach and respiratory cancer curves
are not proportional. The larger shape parameter for
respiratory cancer suggests that it will increase much
more rapidly with age than stomach cancer. Conse-
quently, the size of the age invariant component of risk
is smaller.

It is evident that the pattern of stomach cancer risks
over cohorts is quite different. 1t appears that the mean
risk within cohorts declines nearly at an exponential
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Figure 12. Cohort-specifie risks of stomach cancer mortality among
white males in the United States and among white males in five
select states. Absolute levels of risk measured in o units. See text
for explanation.
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FiGUuRe 13, Cohort-specific relative risks of stomach cancer mor-
tality among white males in New Jersey and in select counties in
New Jersey. Relative risks computed by using cohort specific risks
of stomach cancer mortality among all white males in the United
States as the standard.

rate over cohort age. Thus, the cohort trends are nearly
directly opposite between stomach and respiratory can-
cer. As with respiratory cancer, we can plot within state
variation in cancer risks by casting them as a ratio to
the national values. The detrended rates for stomach
cancer in New Jersey are presented in Figure 13.

Here we see that the stomach cancer mortality risks,
after removing the national trends (i.e., large declines
for younger cohorts) are quite stable, That is, the ele-
vation of stomach cancer mortality risks in the target
counties (i.e,, the metropolitan counties in the north-
eastern part of the state), vis-a-vis the remainder of the
state, do not converge. Nor do they converge with the
national values. This implies that the risk factors that
are associated with the cohort declines in stomach can-
cer may operate nationally while those factors gener-
ating risk differentials within a state may affect all
cohorts in a given area uniformly.

Discussion

In the preceding analyses we have attempted to ac-
complish two tasks. The first is the presentation of a
methodology to deseribe and evaluate geographic, tem-
poral, and cohort patterns of chronic disease mortality
risks using available vital statistics data. The devel-
opment of such a methodology was undertaken because
(a) there exist a number of analyses of geographie dif-
ferentials in chronic disease risks, (b) these prior anal-
yses have often paid little attention to temporal and
cohort patterns, and (c) the time series of chronic dis-
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ease mortality risks specific to the county level has be-
come lengthy enough to permit meaningful partial-cohort
analyses (i.e., there are now 20 vears of data available
for all chronic diseases, 1962 to 1981, and 32 years avail-
able for malignant neoplasms, 1950 to 1981).

The methodology we propose involves a two-stage
analysis of local area differences and trends in chronic
disease death rates. The first involves assessing tem-
poral changes in the distribution of chronic disease death
rates in the population (by plotting the county-popula-
tion weighted, age-adjusted death rates for individual
counties). This is useful because it forces us to consider
the deviation of local areas in terms of the overall dis-
tribution of local area death rates. Furthermore, it is
useful operationally because a large number of rates can
be screened rapidly.

The second stage of the analysis involves the devel-
opment of models of the age progression of chronic dis-
ease mortality and morbidity risks observed in cohorts,
These models should be developed on a disease-specific
basis and should help us to unconfound age, period, and
cohort changes in death rates at the local level. We
illustrated this methodology using data on U.S. cancer
mortality. We selected cancer because, for U.8. cancer
mortality, there exists a lengthy time series of data,
there is evidence of significant geographic differentials
in risk, and there were available models of the age in-
crease of cancer morbidity and mortality in cohorts.

In addition to illustrating the methodology, our em-
pirical study of the geographic variation of cancer mor-
tality identifies areal and temporal patterns that have
not been previously described. These patterns suggest
a number of interesting hypotheses about the exposure
factors that generated them.

Specifically, in the first stage of our analysis we were
able to identify certain overall patterns of change that
provided a useful context in which to describe the change
of specific local areas. For example, there is an approx-
imate “upper bound” on the death rates for all cancer
mortality for white males. That is, the highest rates
observed for any local area did not markedly increase
from 1950 to 1978. Furthermore, there was a tendency
for the variances of these distributions to decrease. In-
deed, in several states with large metropolitan areas
and large nonmetropolitan populations the distribution
of rates was bimodal in 1950-59 with nonmetropolitan
counties defining a secondary peak in the density dis-
tribution at much lower rates. The discrete secondary
peak tends to disappear with time. Such “homogeni-
zation” did not seem to oceur for females,

The second stage of the analysis involved modeling
the cohort variation of cancer mortality risks within
county. By using cohort-specific models we could ex-
amine the demographic and temporal details of differ-
ences in cancer risks between areas. This helped us
accomplish two goals. First, by examining the demo-
graphic and temporal factors behind local area differ-
ences in risk, we can detail information to relate cancer
mortality risks to changing exposure factors. Second,

if we determine that estimates of specific parameters
of a model of the disease process are significantly dif-
ferent from the national estimates, we can be more con-
fident in identifying the area as one of high risk. For
example, we showed that the & for each cohort rep-
resent an absolute risk level in a type of proportional
hazards model. Thus the ratic of two cohort & repre-
sents an age invariant relative risk. These risk measures
permit the risk differentials in cohorts to be identified
with exposure differentials. Such echort models can be
adjusted for latency and, under the assumption of in-
dependence, for the effeets of competing risks. Fur-
thermore, as we showed in several plots, the change in
risk over cohorts can be “detrended” by casting them
as a ratio to the national values. In this way, local area
differences can be identified net of very large and per-
sistent national trends that might otherwise tend to
overwhelm local area differences.

By proceeding in this way we have been able to iden-
tify major differences in respiratory cancer trends at
the local area level. First of all, within certain states,
we tended to find large cohort differences in risk be-
tween metropolitan and nonmetropolitan areas for the
oldest cohorts. These differences tended to disappear
with decreasing cohort age. Second, we found major
regional differences between the patterns within states.
For major northeastern states (e.g., New York, New
Jersey) we tended to find that both nonmetropolitan
and metropolitan areas were above the national values
for older cohorts, These differences tended to disappear
for younger cohorts. In southern states, the older cohort
rates tended to be lower in both metropolitan and non-
metropolitan counties. These too tended to converge
with the national values. It appears that these patterns
could be explained by a saturation of respiratory cancer
risks in the white male population. Different patterns
emerged for white females who were not at such a sat-
uration level of risk. Other patterns would emerge for
different cancer types. It appears that such modeling
and decomposition of local area cancer death rates could
help greatly in explaining local area risk patterns, help
in guarding against accepting chanee variation in local
area death rates as real, and help in generating rea-
sonable hypotheses before intensive field studies are
initiated. This appears to be a useful extension of the
proposed monitoring phase discussed in Blot et al. (2),
i.e., by using detailed models of cancer mortality haz-
ards, one is better able to filter out chance geographic
and temporal variation in cancer mortality risks.
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