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Biostatistical Issues in the Designh and
Analysis of Multiple or Repeated

Genotoxicity Assays
by Lutz Edler

Tests for genotoxic or mutagenic effects of chemicals have prompted efficient bipstatistical methods for the quantification
of dose-response data, especially from the Ames Salmonella/microsome assay. A decision about the genotoxicity of a com-
pound is, however, always based on several assays, and results from multiple ox repeated genotoxicity assays have to be
combined ¢ither qualitatively or, even better, quantitatively. The latter problem is considered here, and issues for design
and analysis are addressed. General recommendations for designing genotoxicity assays are given. A long-known
methodology for combining quantitative parameters from different experiments is npdated and other statistical methods
suitable for the combined analyses of muMiple assays are presented. Some aspects of design and analysis are elucidated

on count data from unscheduled DNA synthesis assays,

Introduction

The increasing number of chemicals, their spread into the
human environment, and their consumption by humans urges
quantitative evaluations of their potential adverse effects. For this
reason, short-term tests (STT) have become a widespread
biological assay for detecting and assessing genotoxic and
mutagenic effects. Growing awareness of genetic factors related
to human diseases and the identification of proto-oncogenes and
tumor-suppressor genes have sparked renewed interest in the
mechanisms of genotoxicity of environmental agents.

Biostatistics has contributed to the design and analysis of
genotoxicity assays in important fields: Trend tests have been
developed to test for the presence or absence of genotoxic effects,
and they superseded muitiple pairwise testing. Nonparametric
methods replaced parametric ones, suspending the assumption
of a Gaussian normal distribution. Transformations were used
to deal with variance heterogeneity. Weighted regressions were
applied for fitting dose-response models that had been estab-
lished either as empirical statistical models or as structural math-
ematical models motivated by biological considerations.
Methods for coping with overdispersed data and tests for check-
ing the distributions of the data were developed. Outlier detec-
tion and use of historical control information have been estab-
lished for quality control. Methods for the analysis of a single
assay have been summarized recently (7). There have also been
suggestions and improvements for the design of genotoxicity
assays [See the guidelines of the United Kingdom Environmental
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Mutagen Society (UKEMS) ] (2). These are mostly intuitive and
empirically proved methods rather than theories and they may be
called *statistical common sense.”

In practice, genetic toxicologists do not conduct only one
single assay. Usually, they repeat an assay several times either
under identical or varying conditions. This may be done to assure
previous results or to cope with the fact that genotoxicity of a
compound can be expressed in different ways. The Ames test, for
example, has used several tester strains sensitive to different
types of mutations. Thus, results from multiple or repeated
genotoxicity assays have to be combined somehow. Decision
making on the presence or absence of genotoxicity is supported
formally by statistical methods of multiple comparisons, and
there may be further progress by use of Bayes methods. On the
other hand, there is also need for a quantitative combination of
results from several assays. Linear models and, more recently,
generalized linear models (GLIMs) can be used if the design of
the experiment was regular enough. In other cases, long-known
methods of weighted means are useful. Their use for genotoxicity
assays will be described below. Before dealing with the question
of how 1o combine estimates, some general design considerations
for genotoxicity assays are given.

Design and Conduct of
Genotoxicity Assays

This section addresses and illustrates basic elements of ex-
perimental design. More details on various assays (bacterial and
mammalian cell colony and fluctuation, in virro and in vive
chromosomal aberration, sister chromatid exchange, Drosophila
and dominant lethal) can be found in Kirkland (2). Basic
biostatistical elements in designing genotoxicity assays are listed
in Table 1. Statistical analysis requires the specification of an end
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Table 1. Biostatistical elements in designing genotoxicity assays.

Element Example
Experimental unit Cell, cell culture in petri dish, animal ir vivo
assay

End point Observability, measurability, identifiability

Conditions for evaluation Inoculum size, parallel survival assay, in-
cubation prior fo treatment, treatment in non-
nutrient medium, treatment afier growth in
nutrient medium.

Treatment groups Two-sample, many-to-one sample, dose
response, controls

Sources of variability

Sources of bias

Methods of statistical evaluation

point, which might be a frequency of counts, a mutation rate, etc.
Questions of observability, measurability, and identifiability have
to be addressed in some cases, €.g., when a mutation rate has to
be calculated from a mutation and a parallel survival assay. The
number of cells seeded on a plate (inoculum size) or other con-
ditions of experimentation affect the outcome. The recognition
of sources of variability is important. We distinguish within-assay
variability and between-assay variability. Within-assay variabili-
ty contributes to the sampling variation and may be caused by
dilution, weighing, pipetting errors, variability in experimental
handling, variability of cell divisicn rates in different plates, or
counting errors. Between-assay variability contributes to repro-
ducibility and may be caused by physical and chemical proper-
ties of the agents, their storage and preparation, or changing
growth conditions. More general between-assay variability may
be caused by “historical” changes of the protocol, by personnel
fluctuation in the staff of the laboratory, or by a genetic drift of
the biological material.

A second important aspect is statistical bias: a systematic
change of the end point variable, usually to higher or lower values
than expected under the ideal experimental conditions. There is
no guaranteed protection against biases, but there are
possibilities to reduce or at least recognize them by some lessons
learned from clinical-trials methodology: Running assays in
several laboratories (multicentricity) increases the testing capaci-
ty, allows the assessment of interlaboratory variability, and in-
creases representativity of the result. Blind evaluation is possible
by using coded chemicals and coded dose groups, and random-
ization between laboratories and of the order of experimentation
might be possible.

Experimentation

Formal experimental requirements have to deal with repro-
ducibility: Physical and chemical properties of test compounds
have to be well characterized and controlled. A genetic drift of
the biological material during prolonged culturing has to be
recognized early. Induction, preparation, and storage of com-
pounds and solvents is a major technical point. Decisions have
to be made, for example, between agar-based and liquid-based
assays. Use of auxiliary exogenous metabolic activation (e.g., 89
mix in Ames test) or selective agents must be considered because

most target cells have only limited endogenous metabolic capaci-
ty. The guarantee of a stable and low spontaneous mutant fre-
quency becomes a major point, when, at the same time, suffi-
cient numbers of cells have to be plated to avoid zero counts. It
has been recommended that the number of cells plated initially
should assure that a complete set of zero counts occurs with prob-
ability not higher than 5% (3). Replicated culturing is basic for
statistically evaluable repeated measurements, but a sound
statistical estimation of variability requires separate, stable prep-
aration and treatment, not merely splitting the same mixture.

Design

Factors that are a potential source of confounding include
number of cells at inoculation, number of replications, number
of treatment/dose groups, interval of dosing, and the choice of
controls. Mahon et al. (3) recommend a minimum of three dose
levels and two separate cultures in each dose group. Blank
negative controls and solvent negative controls should be used
(4). Positive controls should be incorporated routinely for quali-
ty control. Some general requirements have been listed in Table
2. Important elements of statistical design are randomization and
assessment of results under blind conditions. The effort and time
spent to check for the application of these elements will result in
more reliable and reproducible results. Two basic designs can be
distinguished: (@) testing for a difference between the treated {ex-
posed) and the untreated controls, (b) establishment of a dose-
response reiationship with the aim to quantify genotoxic potency.
Another benchmark is the choice between parametric and non-
parametric models. Although this can still be decided when the
experiment is over, it is wise to consider it in the design phase
because of its impact on the optimal determination of dose groups
and the number of replicates per dose.

End Points and Data Structure

The structure of the data of a genotoxicity experiment depends
on the type of the experiment and on the experimental units.
Defining factors are shown in Table 3. Mostly, the end point is
either a count (e.g., count of revertants, count of aberrations,
count of sister chromatid exchanges), or it is a proportion, if the
counts have to be related to a baseline number (e.g., the number
of surviving mutants among all survivors). Quantitative data are
usually hierarchicalty structured by treatments (dose groups),
solvents, replicated cell cultures, and repeated measurements,
taken at individual cells. Further stages on top of this hierarchy
may be different laboratories or other target cell strains.

Table 2. General requirements of designing a dose-response assay.

Blank and solvent negative controls

Positive control

Minimum of three dose levels

Minimum of two cultures

Increased number of replicates for the negative controls

Number of replicates per dose group depend on the frequency of zero counts:

Ames assay, 3-5; sister chromatid exchange, about 50;
chromosomal abberation, about 200
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Table 3, Defining factors for the data structure of a genotoxicity assay.

Factor Examples
Agents Chemicals, radiation, viruses
Experiment In vitro, in vivo

Measured units Microbes, cells, cultures, insects/mammals

Design Treatment/control, dose response
Evaluative criteria Qualitative, quantitative

End points Counts, proportions

Sampling Model

The predominant question about sampling models has
centered around the appropriate class of statistical distributions
for the observed count data. This was triggered by the observa-
tion of extra-Poisson variation in the Ames test. Concurrent to
methods coping with this so-called overdispersion is the use of
transformations toward normality or the analysis of means ob-
tained from an appropriate large number of measurements.

Dose-Response Model

The primary choice of a dose-response model is between a
parametric and a nonparametric functional species. Nonpara-
metric methods may be preferred if no agreement on a common
sampling model can be found or if one looks for statistical models
that are valid under different experimental conditions (laborato-
ry, tester strains, age, and status of test compound). On the other
hand, a parametric dose-response model provides an casier way
to obtain mutagenic potency measures.

Control of Variability

Weighing, pipetting, transferring microbial cells between ves-
sels and plates, and clumping of cells are factors usually contrib-
uting to a high variability, Other sources are varying toxicities on
plates, different rates of cell division, dilution or counting errors,
variable operators’ skills, and calender time. Jrz vivo experiments
are further loaded by genetic differences between animals. Use
of negative and positive controls is generally advised to control
for day-to-day and animal-to-animal variability. Negative con-
trol data should lie in an acceptable range and should be com-
pared with historical control data. On the other hand, positive
control data should confirm the effectiveness of the entire assay.
Table 4 concerns the use of control information in the process of
deciding about genotoxicity.

Table 4. Elements of decision making.

Is there homogeneity between negative controls?

How do current negative controls compare with historical negative controls?
How do current positive controls compare with historical positive controls?
Do the treatment groups exceed the negative controls or an absolute threshold?
Do the treatment groups show a dose-response relationship?

Wias there increased toxicity or decreased cell survival?

Is there reproducibility between different cultures in the same experiment,

between different experiments in one laboratory, or between different
laboratories?

Multiple Experiments in Genotoxi-
cology: An Example

Multiplicity of genotoxicity assays is shown clearly in the in-
vestigations performed by the U.S. National Toxicology Program
(5). Recently, 42 further chemicals were examined using the
Ames Salmonella test in four laboratories (up to 3 per chemical),
with 3 solvents (up to 2 per chemical), 5 tester strains, 3 §-9 mix
categories (none, hamster, rat}, and with as many as 4 repetitions
per laboratory. This would have led to 1680 assays for one
chemical if the maximum number of possible combinations had
been used. Of course, most of the possible combinations were
not realized because of a reduced number of laboratories, a
choice strategy for tester strains, and the choice of the §-9 mixes
(and costs). In fact, most chemicals are tested in one laboratory
and with one chemical only, which reduces this number to 140
possible combinations. Actually, the total number of dose-
response experiments for a genotoxic investigation is usually
below 100. For tribromomethane (Bromoform), Zeiger (5)
reported 98 dose-response experiments. Reasons for multiple
experiments vary. Duplicates are run for confirmation; random
inclusion of known positive and negative controls are used for
monitoring and controlling the quality of the laboratory; repeated
tests are run if unexpected or conflicting results were obtained
(6). Table 5 gives the nomenclature for the methods discussed
in the following section.

Combination of Estimates

Note that before combining results, it has to be proved that the
results are suitable to be combined. This is not easy and may be
only partially solvable by statistical tests on heterogeneity or
trend. Experimental comparability should be addressed in
cooperation with the biologist. On the other hand, there may be
situations where one has to come to a conclusion based on a
series of estimates if there remain doubts on the comparability.

One Factorial Set of Experiments

Let us consider [ assays where each has led to an effect
estimate, m;, with a variance estimate, v;, { = 1,..., [ [see
Cochran (7)]. In some cases we also assume that the estimate v;

Table 5. Nomenclature for multiple genotoxicity assays.

Group Dose Measurements
One assay: dose-response experiment
Negative control dO Aop 'XOPto
Solvent control oy *on "
Dose group d 1 Xy e X Iny
Dose grou, d X ...
group I fil Iln;
Positive control x' PARRE x’ Pn,

Multiple assays: more than one assay parallel
Repeated assays: multiple, nonparailel assays

Experiment: usually an extended study comprising more than one assay
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is based on f; degrees of freedom and is stochastically indepen-
dent of m.. An additive model for the estimate m; is assumed

m=m+ (m—m)+ e 0

where m is the combined effect, a; = m; — m is the interassay
deviation, and ¢, is the intra-assay error, The variable a; and ¢
are assumed to have expectation 0 and variances o and o2
E'la;] = 0 would imply that there is no interassay heterogenei-
ty. Note that this corresponds to a linear model of complete data
of the form ¥; = m + a; + ey, where, for example, a; and e;
are independent and standard normally distributed with expec-
tation 0 and variances o7 and of, respectively. Special cases are
covariance analyses of either (a) ¥, = m + o; + b dy + ¢; 0r (b)
Y, = m + o + bdy + ¢, Case b contains a combined dose effect, b,
which summarizes the single dose effects b; from case a, if the
variances o7 do not dependent on the ith assay. Regression
within the groups (assays) leads to an estimate, b, which is a
weighted mean of the individual estimates, b;. Without further
assumptions in Equation 1, weighted means of different degrees
of complexity can be calculated. A systematic compilation was
given in Edler (8) see also Tarone et al. {9). The unweighted
mean is the unbiased, least-square estimate of minimal variance
as long as inter- and intra-assay variabilities, o2 and o.% are equal
to 0. Otherwise, a weighted mean estimate with weights
w;i = 1/{aZ + o is at least of minimal variance. Four classes of
means can be distinguished if o? and o? are unknown, as
discussed below.

Unweighted Mean, Variances are given separately for g7=0
or a3 # 0 in Table 6. For the degrees of freedom see Cochran
(7).

Grand Mean. Weighting by the degrees of freedom of the
variances or by sample sizes, n;, gives the grand mean (Table 6).
Variance and degrees of freedom are obtained similar to the
unweighted mean.

Semiweighted Means. Use of weights, w; = 1/ a7 + o2, is
known as semiweighting (Table 6). The variance components,
g2 , will be estimated from the variances, v; . More difficult is
the estimation of the component ¢ . Rao et al. (J0) showed four
possible solutions, an ANOVA-type variance component
estimate, a modification circumventing negative variance com-
ponents, an unweighted sums of squares, and an MINQ estimate.

Variance-weighted Means. If o2 = 0, the weighting reduces
to w; = 1/v;, Then this variance-weighted mean depends heavi-
ly on experiments of high accuracy, and assays with a large
variance have almost no influence. To counteract this, a so-called
partially weighted mean was introduced: The assays are sub-
divided into a class of low-precision assays weighted by their
respective large variances and a class of high-precision assays
weighted by a mean of those small variances. Note also the direct
correspondence of weighted means and methods of meta-
analysis, as well as their relation to Bayesian methods if the
choice of a weighting scheme can be related to the choice of a
prior distribution.

Multifactorial Set of Assays: Combination
of Groups of Estimates

Multiple assays are usually structured by several factors, and
it often becomes necessary to combine estimates over some of

Table 6. Unweighted and weighted means.

Equation

Type of mean

Row =

%)

|

Unweighted mean

Interassay variability
1 . 2
- E(mi‘mUw)

1
R

Yes (a7 > 0)

No {g? =)

I
MGrand =

n;

Grand mean 1 (

Interassay variability
2.2
Zni (@ ,+v))
2
(zni)
2
Zni v

Yes (a2 > O)

No (o2 = 0) 2
(Eni)
m = LEw.m
Semiweighted SW W ii
=1 -
Weights Var= & W=
1 a2
if33 >0 ;= ") £5,>0
T+,
a 1
1 .2
if63=0 Wis - t5,=0

Partially variance-weighted
Increasing order of the variances

Weights
=1/2 =1/2

vp = [ 3 fiviJ/[ Yy fi)

Partial weight for small variances i=t i=1

Table 7. Combiration of groups of estitnates.

Assays EnLEp, e Eyy,
En Enoy i Epy,
ERl ERay coiiiieeee ERIR
With estimates  m,; v; i=1..,kr=1 . ,R

those. It might be reasonable to combine the estimates of the
Ames test assays over different metabolic activation levels when
there is a small number of repeated assays available for each ac-
tivation level (Table 7). Combining those groups of estimates can
be accomplished stepwise by estimating on each step the basic
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parametersand their variancesby a semiweighted mean. In a two-
step approach, one uses at first the model m; = m, + a; + e,
where m; denotes the mean effect of the rth group combined
over the repeated assays, a, denotes the interassay deviations in
the rth group, and e,; is the error term. In this first step, one can
estimate the means for each group as well as their variances. This
gives the groupwise pair of estimates M., V.. The second step is
based on the model M; = m + A, + ¢, where m is the com-
bined effect and A, is the intergroup deviation. This second
linear model is then the basis for a final semi-weighted mean
Msw = (CW.M,)/ W with W = W, and W, = 1 /(S5 + V),
where §3denotes an estimate of the variance component. If §3<
0, use of other weights or use the unweighted mean (9) is
suggested.

Problems arise if the number of replications is small. Then an
ad hoc solution would be a resampling method, where from each
group one estimate is sampled randomly and the mean, m,, of
those I values is determined together with a variance estimate,
v,. The random sampling can be repeated many times like a
bootstrap procedure, A total mean, my, of all repeatedly calcu-
lated means, m,, would give the estimate of the grand effect. A
variance estimate can be obtained as the sum of the “bootstrap™
variance of the m, around m, and a mean variance between the
I groups obtained as mean of the variances v, For details see
Edler (8).

Example: DNA Damage Repair
Short-Term Assays

Unscheduled DNA synthesis [UDS (/1) ] is a type of short-
term test that uses the fact that specific cells {e.g., human
fibroblasts) are able to synthesize DNA beyond S-phase, between
phases G, and Gz, (/2). UV-induced synthesis of DNA between
G, and G: suggests repair of damaged DNA. In fact, most cells
incorporate *H-TdR into DNA during all stages of the cell cycle
after damage. A distinction between S-phase and non-S-phase
is achieved by preexposure labeling, resulting in heavily labeled
S-phase cells, and postexposure labeling, resulting in lightly
labeled non-S-phase cells representing UDS.

The experimental set up for an in vitro UDS assay may be as
follows (13): Cells are taken from living tissue, incubated, and
grown with antibiotics in medium in tissue culture flasks. Growth
should be permitted until confluency to avoid replication nuclei,
with enormous *H-TdR uptake. Next the cells are labeled with
H-TdR to obtain heavily labeled S-phase cells. Then they are ex-
posed to the chemical carcinogens. They are labeled again, and
autoradiograms are taken after washing, fixing, and drying them.
Use of radioactively labeled thymidine allows the application of
autoradiography. The autoradiograms themselves require
developing, fixing, washing, drying, and staining the specimen,
This enables one to quantify the repair capacity of cells after
some expasure to damaging agents as well as the amount of
damage that is assumed to correspond to the amount of repair.
More experimental details were found by Cleaver (/4), who
calculated mean number of grain counts of labeled cells adjusted
for background by subtracting a mean of grain counts in fields of
equal size outside the cell nucleus.

In vivo UDS in rat hepatocytes as complementary short-term
assay to the mouse bone marrow cytogenetic was described by

Margolin and Risko (15). They analyzed the end points, sources
of variability, and the role of historical controls.

Autoradiography

To understand the variability of the data obtained by autoradio-
graphic methods, a short description of the method is in order.
Basically, autoradiography is a photographic method used to
determine the distribution of radioactivity in a specimen contain-
ing radioactive material. During autoradiography, the radioac-
tive specimen is placed in contact with a photographic emuision
consisting of grains of silver halide, usually bromide. The
photographic emulsion is suspended in a gelatin matrix, almost
always coated on a glass plate or a film of cellulose acetate or
polyester resin. lonizing radiation liberates electrons, which in-
itiates a reduction of silver ions into metallic silver at the site
where radioactivity interacts with the emulsion. Photographic
development enhances the effect catalytically, by reduction of ad-
ditional silver ions in the immediate vicinity of interaction sites.
Unaffected silver ions are removed by a fixing solution. The
distribution of metallic silver corresponds to the distribution of
radioactivity on the specimen. Experimental variations are
possible by type and duration of the contact between
photographic emulsion and radioactive specimen. Thus one may
distinguish between temporary and permanent contact, using the
sprinkling, slapping, dipping, floating, or stripping technique for
the establishment of the contact (/6)}. The emulsion is fixed and
stained after some exposure and development time. Location and
intensity of radioactivity of the specimen is indicated by black
spots or grains of metallic silver. The end points of the evaluation
are the silver grains made visible by this method and their
number per cell nucleus. These grains are evaluated micro-
scopically or by image analysis. The quantitative end point is the
number and the areas of the grains. The selection procedure for
cell identification and counting per nucleus has to be defined;
random selection is preferred and “‘blindness™ should be
ensured.

The main source of confounding is the background radioactiv-
ity and grains generated by other sources than the experimentally
controlled radioactivity. This may be the result of prolonged
development of the emulsion, exposure to daylight, radiation ef-
fects from laboratory environment or cosmic radiation, pressure,
chemography, metal ions, static electricity, and differences in
their concentration of soluble bromide ions (/7). The presence
of background grains poses a problem for the analysis of auto-
radiographic counts. In dose-response experiments, the
background can be subsumed under the control group (dose =
0) as long as background intensity does not depend on the dose
Ishikawa and his coworkers (/8) used for a graphic display of a
plot of the mean number of grain counts versus the logarithm of
the dose. This concept was further developed in Thielmann et al.
(13}. Among several other transformations investigated, the
mean versus log-dose gave qualitatively the best results. Plotting
the mean number of grain counts versus the logarithm of the
dose, a parameter, Go, describing the linear increase of the
mean number of grains resulting from a dose increase by the fac-
torof e = 2.72 was used as the potency. The simple linear regres-
sion has the advantage of allowing a straightforward evaluation
of repeated experiments. A normal distribution can be assumed
because a large number of cells can be evaluated. An investigation
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of individual animal net grain counts for the in vivo UDS rat
hepatocytes assay revealed that mean net grain counts of two or
more animals may be considered as normally distributed {/5).

Linear Regression Model for Mean Counts

Data for a UDS dose~-response assay are the number of grain
counts, ¥; per nucleus j (j = 1,...n), and dose group i (i =
1,...0). The increase of the mean number of grain counts per
nucleus with dose is usually concave, suggesting a logarithmic
transformation of the dose as discussed above. Toxicity or satura-
tion effects, which are not well understood, may cause a down-
turn of the dose-response curve at high doses. A recursive
step-down procedure was used to cope with this. Let the model

vi=oa + Bindi=1,1,....1

be given for the mean number of grain counts, eventually after
subtraction of the mean of the zero dose group. Then the suc-
cessive regression equations

Y= a + B[ﬂd,l = l, 1,...,]‘?"

are evaluated for r = 0, 1,...J-3, and doses d; are discarded as
long as a selection criterion holds, such as the minimum
estimated standard error (standard deviation of the residuals). If
the procedure stops at R = R, the resulting model

y=o +8ndi=11,.R

is evaluated by simple linear regression.

Another selection procedure could be based on the method of
Simpson and Margolin (19). The slope estimate 3 is used as
measure of repair capabity. This simple linear model for the
mean number of grain counts per dose has, compared to more
complex adaptive procedures, the advantage that it allows a
straightforward evaluation of repeated evaluations and repeated
experiments per day, several days, or even several laboratories.
Because variance homogeneity might not hold in general,
weighted regression methods may be indicated. Note that mean
counts, ¥;, are no longer independent when the zero dose mean,
Yy, has been subtracted, However, the differences are indepen-
dent of ¥, and hence the estimation of the slope and the error of
variance are unaffected.

Table & Results of UDS determination for 11 selected volunteers from
the German xeroderma pigmentosum program.”

Strain Gy Variance
S1 2.85 0.004
§2 2.36 0.13
83 2.18 0.62
S4 3.35 0.57
85 3.46 0.001
S6 2.43 0.31
§7 293 0.75
S8 4.09 0.79
359 3.26 3.27
S10 4.48 1.73
SIit 3.09 4.41

UDS, unscheduled DNA synthesis.

“Gg values of each assay were obtained by linear regression and results of two
to three assays were combined by an unweighted mean to a common Gg value of
each cell strain.

Deviations from dose linearity are observed frequently. A sim-
ple device is to use a piecewise linear regression, for example,
by distinguishing two dose regions. Table 8 shows the unweighted
means of an evaluation of 11 selected strains of volunteers from
a large-scale evaluation (/3), Slope estimates, Gy, had been ob-
tained from two to three dose-response assays by linear regres-
sion as described above. G, for strains S1 and 85 had a high
precision in contrast to strains 89, S11, and to some extent SI0,
which had a low precision because of a high interassay variability.
The semiweighted mean over these unweighted means resulted
in a combined Gy of 3.0 for all normal strains with variance
estimated as 0.07, whereas the partially weighted mean gave a
combined Gy = 2.9 with variance 0.09. Without the three low-
precision strains, we obtain a semiweighted mean of 2.9 with
variance (.07 and a partial weighted mean of 2.8 with variance
(.05. The variance component was estimated by the MINQ pro-
cedure (10).

Dose-response experiments for the in vivo UDS assay were
analyzed by Margolin and Risko (15) by a simple linear regres-
sion, as long as the dose-response curve showed no down-turn
at high doses. If there was such a downturn, a simple quadratic
regression was applied. In both cases a measure of mutagenici-
ty was calculated from the estimated regression parameters.

Alternative Methods for UDS Count Data

A nonlinear regression model £ [¥;] = p; (x;, 8) = ¢k (x, B)
can be applied if # or A can be specified as a structural dose-
response relationship. The covariate x; is able to contain ar-
bitrary factor information, i.e., data from rather genera! designs
can be analyzed this way. If it can be shown that the count data
¥; follow a Poisson distribution, Poisson regression methods
can be applied (20). If the dependence of the covariate can be ex-
pressed via a link function, the solution is also obtained by
generalized linear models (GLIMs).

Engel (21') applied quasi-likelihood methods to the analysis of
count data from nested designs. The log-quasi-likelihood { {u.x)
satisfies the equation 81/9p = (x — p) X V() where V () is the
variance function. Two fypes of mean variance relationships have
been found to be important for count data: ¥ () = o’gor V (u)
= o%u*. A design where a random factor, B, is nested within a
second random factor, A, was considered as well as a design with
two fixed factors, Aand B, fordata ¥, i = 1,....Lj=1,....J. k
= 1,...,K, satisfying a negative binomial distribution with
parameter {a;;, P;). The variable o denotes the shape parameter
of the hidden I'-distribution and p = /1 + 6, where & is scale
parameter of the I'-distribution. Two cases are considered for the
second design: a) only oy depends on the two factors (and 0 is
independent of A and B), b) only 8; depends on two factors,
Case a corresponds to a constant mean/ variance ratio dependent
on the mean. Case b can be imbedded into a GLIM only if « is
known because otherwise the distribution does not belong to an
exponential family.

Conclusions

Biostatistics has made important contributions to an unbiased
and efficient analysis of the Ames Salmonella assay; and despite
the variety of genotoxicity assays, this methodology seems to be
applicable or adjustable to a considerable number of genotoxicity
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assays. One has to account for considerable variability of the out-
“come variable of an assay because of factors acting during the ex-
perimental progress as well as because of conditions varying be-
tween experiments. Variability can be partially controlled by
statistical methods. This necessitates designs with negative and
positive controls and use of replicates. Otherwise, common bio-
metric principles of experimental design apply to genotoxicity
assays. This includes the comprehensive, formal planning of the
whole investigation. Blind evaluation, reference evaluation, and
principles of randomization should be established and repeated
assays should be planned at the beginning of an investigation. Se-
quential methodology may be helpful and should be explored fur-
ther. Assays of a planned investigation should be checked for
heterogeneity of distribution of the outcome values (e.g., means
and variances). Weighted means are shown in this contribution
as an elementary method for combining estimates obtained from
genotoxicity assays and provide summary measures. They can
be applied stepwise in higher-order designs. Statistical regres-
sion models may be applied to well designed factorial ex-
periments and to studies with multivariate covariables.
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