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Nonparametric Regression Analysis of
Data from the Ames Mutagenicity Assay

by John B. Cologne' and Norman E. Breslow’

The Ames assay has received widespread attention from statisticians because of its popularity and importance to risk
assessment. However, investigators have yet to routinely apply modern regression methods that have been available for
more than a decade. We study yet another approach, the application of nonparametric regression techniques, not as the
ultimate solutien but rather as a framework within which to address some of the shortcomings of other methods. But non-
parametric regression is itself prone to difficulties when applied to Ames assay data, as we show through the use of two
examples and some simulation studies. We argue that there remains a great need for further development of statistical
methods suitable to the Ames assay. It is hoped that such work can be stimulated and guided by greater collaboration

between statisticians and laboratory investigators.

Introduction

The Ames (Salmonella/histidine reversion) mutagenicity
assay (/,2) may be the most popular short-term procedure for the
evaluation of chemical mutagenic and carcinogenic potency.
Because of its central role in risk assessment, the assay has
received the attention of numerous statisticians who have sought
to develop and apply appropriate methods of analysis with the
goal of providing valid tests of mutagenicity and estimates of
potency. Breslow and Kaldor (3) reviewed the wide range of
statistical methods that have been proposed for use with the
Ames assay and other mutagenicity assays. In particular, modern
methods involving regression models and incorporating assump-
tions concerning biological mechanisms and distributional prop-
erties of the response data have become available and should be
preferred over the use of simpler, more classical methods.

In light of these advances, it might be expected that investi-
gators would routinely apply modern methods of analysis. Yet,
an informal scan of recent volumes of one major journal revealed
that these methods are almost never used by investigators. Most
inferences regarding mutagenicity seem to be based on classical
methods of analysis (e.g., simple regression or ANOVA, multi-
ple #-tests, etc.) or even nonstochastic methods such as the two-
fold rule (4). The problem of bridging the gap between statisti-
cians and toxicologists therefore remains to be overcome. This
contrasts sharply with the fields of epidemiologic research and
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clinical trials, where modern regression methods are much in
VOgue.

Given this state of affairs, 1s it reasonable to introduce new
methods and to further develop existing ones? Should not efforts
be directed toward facilitating better application of existing
methods? We would argue that both problems require further at-
tention, narnely: a) Statisticians have not yet achieved an ultimate
solution to the problem of how best to analyze Ames assay data;
and b) investigators should make concerted efforts to understand
and apply, with the aid of statistical collaborators, modern
methods of analysis. In this way, investigators can help statisti-
cians to evaluate the utility of various methods by providing in-
put as to their performance on a large amount of real data. Such
feedback should enable statisticians to develop better methods.

We should interject at this point that we strongly advocate col-
laboration between statisticians and laboratory investigators. We
do not deem simplicity or ease of understanding on the part of
nonstatisticians to be the only criterion for recommending
methods of analyzing laboratory data. Proposing overly simple
and statistically inefficient methods to make them palatable to
statistically untrained researchers canlead to misleading results
and, perhaps, distrust of statisticians. We hope that this con-
ference, by bringing together statisticians and toxicologists, will
allow toxicologists to acquire better understanding of statistical
methods and help build the kind of collaboration that will further
the interests of both fields of endeavor.

With these introductory ideas in mind, we turn now to focus
specifically on the first issue, the need for further development
of methods of analysis. We will not address the issue of facili-
tating better application. We propose a new direction for
methodological development in the area of the Ames assay —
nonparametric regression — and present a specific example
based on the smoothing spline. This paper is not meant to be the
final word on statistical methods for the analysis of Ames data,
nor do we wish to imply that the present method is the only
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Figure 1. Hlustration of the Ames assay. Mutant bacieria (S. eyphimurivn, ovals) are applied to plates containing growth medium (including histidine) and the test
chemical. The chemical may cause mutation (M) or cell death, or it may have no effect. After histidine is depleted, only histidine-independent reverse mutants
can continue to divide, producing colonies that are visible as spots on the plate {right). The microorganisms that survive but do not reverse-mutate form a discoloration
of the plate called the “background lawn.” With severe toxicity, most microorganisms are killed, so that the background lawn is absent; such plates are typically

excluded from analysis.

possible application of nonparametric regression methods. In
fact, it will be seen that this new method may at present have only
limited usefulness. Rather, we use our approach as a framework
within which to evaluate state-of-the-art methods and character-
ize the need for further research. In the end, we hope it will be
obvious that there remains a great deal of work to be done to over-
come problems that exist in currently available methods. This
work could be in the form of better alternative methods, further
development of existing methods, or comparative studies to pro-
vide guidance as to when and how existing methods should be ap-
plied. Itis expected that all of these can and should be performed
in close collaboration with laboratory investigators.

Overview of the Ames Assay

Figure 1 summarizes the Ames assay. Mutant strains of the
bacterium Salmonella typhimurium, which are dependent on
histidine for growth, are plated on petri dishes that contain the
test chemical and a limited amount of histidine in the growth
medium. The end point is reverse mutation to histidine in-
dependence, which is detected by the existence of surviving col-
onies of bacteria after histidine has been depleted. The outcome
of interest for statistical analysis is the frequency of such col-
onies. Several doses of test chemical are used, including a zero-
dose control. Each dose is typically tested in duplicate or
triplicate. Interesting statistical features of data arising from the
Ames assay include overdispersion (relative to Poisson sampling)
and competing underlying dose responses {mutagenicity and
toxicity).

It is often desirable to condense the results of an assay to a
single number, the “‘mutagenic potency,” to rank and compare
different chemicals, The most common potency measure used in
the Ames assay is the initial slope of the mutagenicity dose
response. The two major goals of analysis are to test for mutagen-
icity and to estimate mutagenic potency (given a positive test).
Often, the mutagenicity test is based on the potency estimator,
but there are methods that test mutagenicity independently from

potency estimation [e.g., Simpson and Margolin (5)].
Throughout this paper, we use the initial slope both to estimate
potency and to test for mutagenicity. We leave it to others to
discuss potency measures and their relative advantages (6,7).
Two examples from the literature demonstrate the wide variety
of data encountered in the Ames assay. The first (Fig. 2a)
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Ficure 2. Two examples of Ames assay resulis {from the literature. (a) Coal
tar base extract data (8). Fitted curves represent point rejection (— —),
nonlinear regression using Equation 1 (- - -), and the smoothing spline ().
(b) Quinoline data (2). Fitted curves represent point rejection (- - -), non-
linear regression using Equation 1 without the quadratic term (-— --), quasi-
likelihood with a loglinear model (- - -)(12), and the smoothing spline (—-).
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concerns mutagenicity of base extract from crude tar effluent
following coal gassification (8). In this example, the presence of
a mutagenic effect seems clear, and we can ascertain the nature
of the dose response from a plot of the data. Note, however, the
possibility of little or no mutagenic effect at low doses because
of the quadratic shape of the low-dose response. Fitted lines are
the estimated dose responses from nonlinear regression, point
rejection, and nonparametric regression {see subsequent
sections).

The second example (Fig. 2b) is from a study of the
mutagenicity of the chemical quinoline (9). In this example it is
not easy to ascertain the dose response because of the variabili-
ty in the data, although both mutagenicity and a downturn due to
toxicity at high doses are evident. Fitted curves are from the point
rejection, nonlinear regression, quasi-likelihood, and non-
parametric regression methods (see subsequent sections).

We will keep mathematics to a minimum, focusing rather on
concepts. Nevertheless, some basic notation is required. Let Y
be the observed frequency atdose i {i = 1, . . ., K), replicate j
(j =1, ...,n)and let the actual value of the ith dose be x; (x; =
0). Let the mean and variance of ¥;; be u; and o7, respectively.

The total sample size is 7~ ,il 7;_ Finally, call the mutageni-
city and survival functions M(x) and S(x), respectively, and let
the composite dose response function be p(x), the expected mu-
tant frequency given dose x.

Regression Analysis of
Ames Assay Data

Breslow and Kaldor (3) have reviewed statistical methods for
analyzing Ames assay data. We mention here only modern
methods that specifically accommodate regression analysis of
Poisson data. All such methods are based in some way on the
mode! of bacterial mutagenesis of Haynes and Eckardt (10},

Bx) = NM)S()

where M(x) and S(x) are exponentiated polynomials and N is
the (unknown) number of plated organisms. A typical example is

B(x) = (my + mx + myxT)e™ ®

where M(x) is approximated by its exponent, which is presumed
to be small. {Note that N has been absorbed into the parameters
of M(x); we subsequently write My{(x) in place of NoM(x).]
Such models have been fit by nonlinear regression (8), Poisson
maximum likelihood (/7), quasi-likelihood (72), and adaptive
procedures [e.g., the point rejection method (/3) based on the
negative binomial likelihood]. The parameters mo (spontaneous
mutant frequency) and m, (mutagenic potency) in Equation 1
may be constrained to be nonnegative if desired, but this is not
necessary in practice. Background mutation frequency is typical-
ly large enough that my is not estimated close to 0, and negative
estimates of m, can be taken as no evidence of low-dose
mutagenicity.

Margolin and others (9,/4) have generalized these models to
incorporate multiple generation effects in the assay, fitting their
models with maximum likelihood using the negative binomial

distribution. In this paper we use their multigeneration model IV
(), with three generations for mutagenesis and histidine deple-
tion and unlimited toxicity, to generate random data for
evaluating the performance of various methods. The form of this
model is

(285Gx)-11, & ;
My (1) = NM@)— )" (201 -M01Sx)" @
’ Sx) i=0

where [a]. = max(0,a).

Several restrictive assumptions accompany the use of Haynes-
Eckardt models. One is that mutagenicity and toxicity are
stochastically independent. If such independence does not hold
{e.g., mutants have different survival rates), then a more general
model may be needed. Another is the lack of metabolic and
mutagenic mechanisms in the model. Indeed, one major
criticism of the Ames assay as used for human cancer risk assess-
ment is that it lacks the complex chemical and cellular
mechanisms involved in human carcinogenesis [briefly reviewed
by Weinstein (/5)].

Apart from the issue of validity of the basic model itself, other
difficulties arise in the case of specific methods. For example, the
point rejection method circumvents toxic effects by rejecting
high-dose points when there is a significant downward departure
from linearity. Two potential sources of bias are: a) model
misspecification when the dose response is nonlinear and &) one-
sided (downward only) point rejection, which can occur by
chance even in the absence of toxicity. The multiple generation
model is theoretically quite attractive, but the choice of genera-
tion times can have a substantial effect on the magnitude of the
estimated potency (9).

Although all methods have potential deficiencies in the
response model, all the methods mentioned above accommodate
nonconstant Poisson variance and overdispersion (with the ex-
ception of maximum Poisson likelihood). In practice, they seem
to perform well in many examples, but more widespread use of
these methods would facilitate a much-needed critical evaluation
of their general applicability. In a later section, we use Monte
Carlo studies to characterize, for some of these methods, cir-
cumstances in which they are most appropriate.

Nonparametric Regression

In this section we only briefly describe one approach to analyz-
ing Ames data by nonparametric regression. Technical details
will be made available elsewhere (Cologne, in preparation); a
brief outline is presented in the Appendix.

Motivation

Before introducing our approach mathematically, it may be
useful to motivate it from a nontechnical perspective. The
hypothetical data shown in Figure 3 provide an exaggerated il-
lustration of the concept of fitting nonparametric functions to
data. Most investigators will be familiar with the use of the sam-
ple means plus or minus two standard errors as depicted in Figure
3a. A straight line connecting the means gives some indication
of the dose response, but it is a crude and inefficient estimate.
Furthermore, the initial slope estimate is based only on the first
two dose levels, ignoring information about the shape of the dose
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FiGurRe3.  Hypothetical Ames assay data used 10 illustrate the concept of nonparametric regression. (@) Simple straight lines connecting sample means. (b) Haynes—
Eckardt dose-response models with linear (-- - and linear-quadratic (- - -) mutagenicity (Equation I). (¢} A cubic interpolating spline. (4) A cubic smoothing
spline. Panels ¢ and c illustrate interpolating curves, which frequently overfit the data, producing highly variable potency estimates. Panels b and d represent various
degrees of smoothing by a mathematical model; the cubic smoothing spline model is less restrictive than the Haynes-Eckardt dose-response model.

response. Finally, the model interpolates the sample means,
thereby ignoring their variability.

Parametric models attempt to account for variability in the
sample means by smoothing them according to some
mathematical model (such as Equation 1 of the previous section).
Figure 3b shows linear and linear-quadratic Haynes-Eckardt
models fit to these data. Initial slope estimates based on these
models incorporate information from the entire experimental
range of doses, not just the first two doses. However, neither
model fits the data well; presumably they do not reflect the true
mechanistic model. In addition, different models with seemingly
equivalent fits to the data can produce disparate potency estimates
(as is well known to occur in the case of low-dose extrapolation
in the animal bicassay).

As an alternative, we consider using a general class of mathe-
matical functions, rather than the specific functions implied by
use of the Haynes-Eckardt model. Figure 3¢ shows the fitof a
“cubic interpolating spline,” a piecewise polynomial function
that connects points in a smooth fashion. (In fact, the line in
Figure 3q is a linear interpolating spline.) The amount of
smoothness at the dose values depends on the degrees of the
polynomials (compare Figure 3¢ to Figure 3a). We can add
higher-order polynomial terms to make the function more
smooth at the dose values. Generally, cubic splines are suffi-
ciently smooth so that higher-order terms are not necessary, but
by interpolating the means, the cubic interpolating spline again
ignores sampling variability. The result is often a curve that is
extremely wavy in the regions between dose values.

The final step is to “penalize” the spline in such a way that it
neither overfits (interpolation, leading to large variability in the
estimated response)} nor oversmooths (straight line regression,

leading to bias in the estimated response). This is done by cross-
validation, a methed that balances bias and variability by letting
the data determine the optimal amount of smoothness. Figure 3d
shows the fit of such a *‘cross-validated cubic smoothing spline”
to these hypothetical data. The fitted curve more closely des-
cribes the underlying response than those in Figure 3b, because
it is based on fewer assumptions concerning the mathematical
form of the response.

The use of flexible, nonspecific, smooth functions to fit data
is generally called “nonparametric regression.”” Note, however,
that there is no clear separation between parametric and non-
parametric regression methods. The difference is the degree to
which the fitted curve is constrained by a mathematical model.
Parametric regression is based on specific models thought to
describe, or at least approximate, underlying biological mecha-
nisms, whereas nonparametric models encompass a wider class
of mathematicat functions that have no such biologically based
interpretation. Furthermore, nonparametric regression produces
parameters; in general, the number of parameters with nonpara-
metric regression will be larger than with a parametric model,
reflecting the greater flexibility of the nonparametric function
(i.e., our uncertainty about the true model).

In general, there is a trade-off involved in choosing between
parametric and nonparametric regression methods. If the model
is correct, we expect that the parametric model will provide more
powerful inference concerning mutagenicity and potency.
However, if the model is wrong, the results can be biased,
possibly leading us to incorrect conclusions. There does not vet
seem to be any single mathematical model for the Ames assay
that a) incorporates all of the biological features of the assay, b)
requires no unverifiable assumptions, and c) can be successfully
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fit to the variety of results encountered in practice. The lack of
such a model motivated us to investigate the possible applicability
of nonparametric regression methods to Ames assay data.

Implementation

We have chosen to use the cubic smoothing spline (CSS)
because it is visually smooth and is easily differentiated. The lat-
ter is important for computing potency, which requires calcula-
tion of the initial slope of the dose-response curve (see the next
section for some discussion of biases in CSS estimation of poten-
cy). Detailed treatment of the CSS is available elsewhere (16,/7).

The CSS is the solution Z(x) to the following penalized
weighted least-squares problem: minimize

—E): - g(x))?

M ogordx @)
11}1 0'.

i X

over the set of twice continuously differentiable functions g with
square integrable second derivative. The smoothing parameter
A = O determines where the solution lies between a straight line
(as A — oo} and a cubic interpolating spline (as A — 0). The
estimator is a set of piecewise cubic polynomials

&x) = 11,- + |3,'(x = x,‘) + ?,'(x - x,‘)z + Sf(x - x,‘)3 (4)
(xi <X < xip, i = 1, ..., K=1), which are constrained to be
continuous and to have continuous first and second derivatives.
These constraints result in a reduction of Equation 4 to K
parameters, which we may take to be the fitted values p=g(x).
For fixed X, Equation 3 reduces to a set of linear equations

R=(,...

where ¥ = (yi, ..., y.) is the vector of sample means and
B(\) is a smoothing matrix depending on the i and the x; but
notony (see the Appendix).

An obvious estimator of mutagenic potency is 51, the initial
slope of the piecewise curve (Eq. 4) fit to the segment between
x1 = 0 and x;, the lowest nonzero dose. Note that 5, depends on
the other data points as well; in fact, $iis a linear combination of
w

; FlK)T = B(A)y

B, = a™p = aTBOLY

with a being a known vector (Appendix), and so 3, is also a
linear function of y for fixed A. The variance of 3, is easily ob-
tained using distribution theory for linear combinations of sam-
ple means.

In practice, A and the of must be estimated. Because of
replicates in the Ames assay, we have the usual unbiased sample
variance estimates

which ordinarily are not available in CSS applications. The value

of X is chosen optimally according to cross-validation by
minimizing

E(Ylj - p-,‘)z
J

with respect to A, where b, is the ith diagonal element of B(A)
and the g; depend implicitly on A, We denote cross-validated
estimators by an asterisk (*).

Although the cross-validated fitted values g * are not a linear
function of y , it may be shown that, for a fixed set of dose values,
asymptotically, z*and y have the same distribution if the num-
ber of replicate observations increases at each dose (/8). This
result is especially useful in providing a means of making in-
ference concerning the inital slope. Since 8¥ is a linear function
of it *, it is asymptotically a linear combination of y and so has
a limiting normal distribution:

yn (B} -

where 3, is the initial slope of a cubic interpolating spline fit to
2
O,

the vector of true means x = (u, - - Lo, T =diag 15[,

and0 < v; = lim il < o isthe llmlllng fraction of pomts at
x;. We may thereforé base inference concerning the initial slope
upon the standard normal z score

B,
SE@BD)

¢
B) = N, aTa)

assuming 3, 1s close to the true mutagenic potency (see the
discussion of biases in the next section). Monte Carlo studies of
the small sample behavior of 3 (not shown) reveal that both its
bias and variance can be strongly affected by estimation of the
smoothing paramater . The magnitude of these effects is
evaluated briefly in comparison studies discussed below.

Biases in the Potency Estimator

The validity of 3F as a potency estimator depends on the
unknown model g {(x) because 3 estimates px'(0) rather than
M’ {0) [recall M,{(x) = NoM(x)]. In the absence of toxicity or in
the case of a toxicity threshhold, u'(0) = M',{0). But without
knowledge of u(x), it is not possible to obtain My(x). However,
if the data are generated by Haynes-Eckardt-type models or
multiple generation models, it is possible to directly estimate
M'(0) and also to calculate x’(0), so that we may assess the
impact of ignoring the survival function S(x}. Let the difference
bias, = p'(0)—M'0) be called the “toxicity bias.” Some
algebra shows that, in the case of Equation 1, bias, = —myps
(3), whereas for the multigeneration Equation 2, bias, =
~IN,3 where
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q = s(1 + 3e—m0/Nu + Se-ZJnJNQ _ 126—3moan)

The validity of 5F also depends on how well a cubic spline ap-
proximates the true dose-response function p(x). Let bias, =
(31 - #'(0) be called the “‘approximation bias”; this is the bias
due to approximating the initial slope of u(x), using the inter-
polating spline fit to the true means. This bias may be calculated
for specific dose-response models by simulating the model and
fitting the cubic interpolating spline. Figure 4 shows the relative
bias bias. / ¢ '(0) as a function of true mutagenic potency m, in
Haynes-Eckardt (Eq. I} and multigeneration (Eq. 2) models, us-
ing various values of the toxicity parameter s (0.001, upper
panels; 0.01, lower panels). In these simulations, six dose groups
were used with relative spacing (0, 0015625, 0.125, 0.25, 0.5, 1);
the highest dose was calculated to give either 90% or 10% sur-
vival. [The appropriate maximum dose for achieving 90% or
10% survival with the multiple generation model assuming
unlimited toxicity may be calculated using probabilities derived
by Margolin et al. {©).] These resulis show that the spline approx-
imation bias is quite large with 10% survival, presumably
because there are insufficient data for the spline to mimic the
dose-response structure between the first two dose values in the
low-dose portion of the curve. Increasing the quadratic term also
increases the relative bias.

Finally, there will be bias due to estimation of the smoothing
parameter x; call bias, = 3F — 3, the “smoothing bias”” Accor-
ding to the above asymptotic distribution the smoothing bias will
be small in large samples. This bias is not easily computed
theoretically, but it may be ascertained from Monte Carlo studies
by subtracting the toxicity and approximation biases from the
total bias of the estimator, as illustrated in the next section. The
total bias in 3¥ as an estimate of min Equation 1 is

1
o)
*

bias,, p o om

By - B, + [B, - W] + WO - m)]

bias, + biasa + bias,

so bias, = bias., — bias, — bias,. Note that bias, and bias, are
functions of the unknown u(x), so they cannot be individually
ascertained except by knowledge of u(x). On the other hand,
bhias, 1s a small sample bias that can be made small by the use of
sufficiently large samples.

Comparative Studies

We now describe Monte Carlo studies designed to evaluate the
CSS approach and compare the CSS to two other regression
methods: nonlinear regression and the point rejection method.
W also compare the fits of these methods to the two example data
sets introduced earlier. The multigeneration approach of
Margolin et al. (9,/4) was not compared because of the difficulty
of estimating the generation times.

Monte Carlo Studies

In the Monte Carlo studies we used a variety of Haynes-
Eckardt and multigeneration models, with varying degrees of
curvature and either 90% or 10% minimum survival, to obtain
random Ames assay type data. All studies were based on five
dose levels with relative spacing (0, 0.125, 0.25, 0.5, 1). Random
Poisson or negative binornial variables were generated according
to algorithm “NG” of Ahrens and Dieter (19). Three replicates
were generated at each dose. Each experiment consisted of 2000
simulated data sets. If there was no quadratic mutagenicity term
(m; = 0) in the model that generated the data, we fit a linear
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Figure 4. Interpolating spline relative bias in the initial slope estimator. Results are for dose responses simulated according to either Equation 1 or Equation 2,
using various values of the quadratic mutagenicity term: [m; = 0 (—), mz = 001 (- - -), and my = 0.1 (- - -)}, survival parameter (s = 0.001, upper panels; s

= 00, lower panels}).
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Table 1. Simulated comparisons among the soothing spline, point rejection, and nonlinear regression methods: Haynes—Eckardt models with 90% survival.

m=0, m=001, s=0

m=2, m=90, s=001 m=2 m=01 5s=001

Distribution Distribution Distribution
Method Parameter P NB P NB P NB
SS Potency 0.18 0.18 1.65 1.59 2.12 2.07
SSE 0.23 0.31 2.17 2.37 2.33 2.14
CSE 0.43 0.45 2.62 4.05 3.86 4.10
Power 0.059 0.067 0.45 0.17 0.16 0.16
PR Potency 0.93 0.93 1.80 1.82 2.55 2.57
SSE 0.05 0.07 0.77 0.84 0.57 0.59
CSE 0.10 0.10 0.50 0.52 0.48 0.50
Power 1.0 1.0 0.94 0.90 1.0 0.99
No. of 5.0 5.0 4.8 4.8 4.9 4.9
points®
NR Potency -0.11 -0.13 3.52 3.65 1.56 1.39
SSE 0.21 0.23 1.85 2.0 2.18 2.49
CSE 0.24 0.27 2.96 3.17 322 3.58
Power 0.011 0.010 0.37 0.33 0.12 0.096
No. of 1570 1632 1916 1933 1610 1545
convergences®

Abbreviations: 58, smoothing apline; PR, point rejection; NR, noniinear regression; P, Poisson; NB, negative binomial; SSE, sampling standard error; CSE,

computed standard error; m, linear term; s, quadratic term; s, toxicity term.

*Average number of retained points after point rejection.
*Number of cases in which NR converged.

mutagenicity model with nonlinear regression [Eq. 1 with m;
= 0]; otherwise we fit the full model (Eq. 1). With all three
methods, the test of mutagenicity was based on asymptotic nor-
mality of the initial slope estimator divided by its standard error.
Power was estimated for a one-sided level 0.05 test by the pro-
portion of times the z score exceeded the critical vatue 1.645.

The first set of results (Table 1) is for data generated by Equa-
tion 1, taking mo = 235 and using various values of m, m», and
§ at 90% minimum survival. Sampling standard error is the
standard deviation of potency estimates from the 2000 simulated
data sets in one experiment; computed standard error is the
average of the 2000 individual standard errors computed from
each simulated data set in an experiment. Simulated data were
either Poisson or negative binomial with variance [l +
0.0054]. Because the models evaluated were nearly linear over
the range of doses at which 90% minimum survival was
achieved, the nonlinear regression method failed to converge
about 25% of the time except in the case where m2 = 0. Most
notable from these studies were the positive bias and inap-
propriate test size of the point rejection method under the null
hypothesis (2, = 0) in the presence of upward curvature, con-
trasted with the lack of power of the smoothing spline and
nonlinear regression methods under the alternative model
(my= 2). Negative binomial errors (to mimic overdispersion)
led to a reduction in power and a slight increase in standard er-
ror with each method. Results for data generated by the multi-
ple generation model with 90% minimum survival were similar
and so are not shown.

The second set of results (Table 2) is for data generated by
Haynes~-Eckardt and multiple generation models, using various
parameter values, and with 10% minimum survival. For multi-
ple generation models, parameters of the mutagenicity function
M(x) may be approximately related to parameters of the
Haynes-Eckardt model M,, (x) by dividing the latter by 7 X N,
(13). We took Ny = 10, All simulated models displayed

substantial curvature over the wider range of doses produced by
allowing survival to decrease to 10%, and the nonlinear regres-
sion method nearly always converged. The power of all three
methods was greater than in the above cases of 90% minimum
survival. The nonlinear regression method performed quite well
on data generated by Haynes—-Eckardt models, whereas the
smoothing spline and point rejection initial slope estimates were
highly sensitive to the magnitude of the quadratic term.

With multiple generation models and 10% minimum survival,
the smoothing spline was the only method able to closely esti-
mate a small positive potency (last column of Table 2). The non-
linear regression method gave highly biased and variable initial
slope estimates, whereas the point rejection method over-
estimated the initial slope when the true potency was small.

As an example of the total bias calculations for the smoothing
spline (see the previous section), consider the estimate 1.65 from
Table 1 (m, = 2, m, = 0, s = (.01, with Poisson errors and
90% survival)., The total bias is

bias,, = f] - m; = 165 -2 = -35
Now

bias, = -mys = -25x.01 = -.25

and, from calculation of the interpolating spline fit to the true
means, bias, = -~0.01, Thus

bias_ = -35 + 25 + 01 = ~.09
is the amount of bias in 3F due to smoothing.
Example Data Sets

Earlier, we introduced two example data sets from Ames
assays of coal tar base fraction (Fig. 2a) and quinoline (Fig. 2b).
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Table 2. Simulated comparisons among the smoothing spline, point rejection, and nonlinear regression methods: Haynes—Eckardt models with 10% survival.

Haynes-Eckardt, m; =2, §=0.01

Three-generation, s=0.01

m=2 p=0.1
Method Parameter my=0 m=0.1 = m;=0.1 my=0.01
SS Potency 1.29 3.18 0.91 1.79 0.19
SSE 0.25 0.37 0.54 0.63 0.59
CSE 0.27 0.36 0.76 0.81 0.70
Power 0.99 1.0 0.28 0.73 0.061
PR Potency 1.0 4.08 0.79 1.82 0.87
SSE 0.11 0.10 0.32 0.29 0.15
CSE 0.11 0.1 0.26 0.22 0.16
Power 1.0 1.0 0.63 1.0 0.99
No. of points® 3.0 4.0 32 37 4.0
NR Potency 2.01 1.97 4.35 -0.91 -1.63
SSE 0.19 0.52 0.64 1.57 1.17
CSE 0.18 0.51 0.93 1.97 1.48
Power 1.0 0.97 1.0 0.14 0.001
No. of 2000 2000 2000 1998 2000
convergences®

Abbreviations: 88, smoothing spline; PR, point rejection; NR, nonlinear regression; P, Poisson; NB, negative binomial; SSE, sampling standard error; CSE,

computed standard error; m,, linear term; m,, quadratic term; s, toxicity term.

*Average number of retained peints after point rejection.
"Number of cases in which NR converged.

Table 3. Initial slope inference for example data sets.

Method Parameter Coal base data (8) Quinoline data (9)
Smoothing spline Estimate 0.52 0.18

SE 0.13 0.50

z Score 0.46 0.36
Point rejection Estimate 17.0 0.24

SE 0.8 0.06

z Score 213 4.0
Nonlinear regression  Estimate -1.0° 0.20°

SE 35 0.07

z Score -0.29 2.9

*Equation | with linear-quadratic mutagenicity.
*Equation 1 with linear mutagenicity.*

Table 3 displays estimated potericies obtained from the three
methods compared above, along with standard errors and z
SCOores.

As with the Monte Carlo studies, there is large bias in the point
rejection slope due to an upwardly curving response in the case
of the coal base data. However, the point rejection method is the
most powerful in the case of the quinoline data, in which the low-
dose linearity assumption appears reasonable, and all three
methods gave similar estimates. The smoothing spline dose-
response estimate for the quinoline data appears strange in the
high-dose region because there is a large gap with no informa-
tion between the highest and next highest doses {(a seemingly
uninteresting region of the dose response). This points out the
need to consider issues of experimental design; the same total
sample size applied to a narrower dose range would provide
more information concerning mutagenic potency.

Conclusions

Each of the methods we compared performed best in situa-
tions where its assumptions most closely held true. The

nonlinear regression method [based on the Haynes-Eckardt
model (Eq. 1)] performed well when the true model was Equa-
tion 1 and the dose range was wide enough that all of the
parameters were estimable from the data. The point rejection
method was quite powerful when the underlying dose response
was nearly linear, but otherwise it overestimated mutagenic ef-
fects. The smoothing spline performed best in situations when
the nonlinear regression was inappropriate because of the wrong
model (e.g., with multigeneration models) and when the point
rejection method was wrong due to curvature in the initial dose
response (e.g., with nonlinear models and wide dose ranges).
No single method performed well under all situations.

The smoothing spline approach was designed to provide an
alternative to model-based regression methods when the
underlying model is nonlinear and does not follow Equation 1.
We observed that, when the dose range is selected so that
minimum survival is at least 90%, even multigeneration models
are nearly linear over the entire dose range, so that the point re-
jection method produces quite reasonable results. In this sense,
the smoothing spline is rather disappointing because it appears

COLLABORATION

v

Apply and
evaluate
methods

i

Develo
existi n% <}:| METHODOLOGIC Cz: ri:{z:ltraiiva
methods RESEARCH studies

v

Find new methods

Ficure 5. Ilustration of needs for further research into methodologies for
analyzing Ames assay data.
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that we may achieve madel robustness using the point rejection
method so long as adequate dosing experiments are performed
first. However, a greater understanding of the Ames assay on the
part of statisticians is needed before it can be said whether this
will be true generally in practice. For example, day-to-day varia-
tion in Ames assay results decreases the effectiveness of dosing
experiments {(B. H. Margolin, personal communication); this
may lead to difficulties in attempts to routinely achieve approx-
imate linearity.

Based on the lack of a single acceptable method, it appears that
more work is needed to further develop existing methods or to
find new methods that will perform well with Ames assay data
without being so closely tied to model assumptions. In addition,
further comparisons among methods are needed to understand
in which circumstances the various methods are appropriate.
Such studies, as well as comparisons on a number of achual Ames
data sets, should be performed in conjunction with laboratory in-
vestigators so that situations that are most relevant in practice
may be identified and studied. Figure 5 summarizes the need for
further research into statistical methods suitable for use with the
Ames assay. It emphasizes the important role that collaboration
and application should play in this work. Statisticians can also
contribute by advising researchers on how they can design bet-
ter experiments so as to obtain the sort of data needed for robust
analyses. Finally, it would be useful to have methods for compar-
ing goodness of fit among the variety of models discussed in this
paper. It is hoped that more statisticians will become interested
in these problems and that greater collaboration between statisti-
cians and laboratory investigators will occur in the future.

Appendix
First, let A be fixed. The solution to Equation 3 is a piecewise

cubic polynomial (/6), so Equation 3 may be rewritten: minimize

%(Y - JOTSTYY - Jm) + aptop

where J is the expansion matrix

1, 0-0
01, -

R |
001

oy

(20), Y= (Y]_|, feay Yl,n]; Y2,1, ey anz; ey YK,I’ .y YK.nx)T
is the vector of all observations, £ is the “penalty matrix,” which
depends only on the x;, and § = diag{}ar(Y,)} (i.e., a diagonal
matrix of the s} suitably expanded). Differentiating and setting
the result equal 1o zero, we obtain

A= (7S + mQ) ' yTs Iy
- {5+ s
= BV

2
s
with Sy— = diag)— [ . The i may be computed directly or via
n.
I

the equivalent algorithm “SMOOTH” of deBoor (16) that soives
for the third-order coefficients +; in Equation 4.

For estimating A by cross-validation, Silverman (27) has
recommended golden section search. At each iteration, we com-
pute CV{\) using g based on the current value of A in the search.
Occasionally, because of unequal spacing between dose points,
there is a tendency to interpolate nearby means, This produces
wavy dose-response curve estimates that are unlikely to be
acceptable to investigators. In such cases, we find that mini-
mizing the weighted cross-validation score

wd (¥, - 1y’
CV (A = E_J_____._
i 2 bi
nsi|l - —

n;

using the interval-length weights (D. Ragozin, personal
communication)

(x, - x;)

Mg
X, - X

w, = 5 L =2, ..., K-1
(g = xg_)

Wy = 3

often produces satisfactorily smooth dose-response estimates.

To compute the initial slope estimator, we use the fact that
may be written as @ = QR-'{", where @ and R are tridiagonal
matrixes (/6). Then, using linear relationships among the coef-
ficients of the piecewise polynomial (Eq. 4) (16,22),

B1=——ﬂ2_ﬂl

)

T T

x2 o7
—_— -_—_a
c OB =a’l

where w is the first column of QR and

~1)

X

1
a=|- 24

0 6

0
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