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BACKGROUND: The widespread availability of powerful tools in commercial geographic information
system (GIS) software has made address geocoding a widely employed technique in spatial epidemio-
logic studies.

OBJECTIVE: The objective of this study was to determine the effect of the positional error in
geocoding on the analysis of exposure to traffic-related air pollution of children at school locations.

METHODS: For a case study of Orange County, Florida, we determined the positional error of
geocoding of school locations through comparisons with a parcel database and digital orthophoto-
graphy. We used four different geocoding techniques for comparison to establish the repeatability
of geocoding, and an analysis of proximity to major roads to determine bias and error in environ-
mental exposure assessment.

RESULTS: Results indicate that the positional error in geocoding of schools is very substantial: We
found that the 95% root mean square error was 196 m using street centerlines, 306 m using
TIGER roads, and 210 and 235 m for two commercial geocoding firms. We found bias and error
in proximity analysis to major roads to be unacceptably large at distances of < 500 m. Bias and
error are introduced by lack of positional accuracy and lack of repeatability of geocoding of school

locations.

CONCLUSIONS: These results suggest that typical geocoding is insufficient for fine-scale analysis of
school locations and more accurate alternatives need to be considered.
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Advances in geographic information systems
(GIS), statistical methodology, and availability
of high-resolution georeferenced health and
environmental data have created unprece-
dented opportunities for spatial epidemiology
to investigate local geographic variation in dis-
ease (Elliot and Wartenberg 2004). GIS has
become widely used to locate the study popu-
lation by geocoding addresses, using proximity
analysis of pollution sources as a surrogate for
exposure, and integrating environmental
monitoring data into the analysis of health
outcomes (Nuckols et al. 2004). As the capa-
bilities of GIS have improved, address geocod-
ing has become a very accessible research
methodology, and as a result the individual
address is becoming a standard level of spatial
investigation. Geocoding can introduce bias
and error (Rushton et al. 2006) but the effect
this has on the results of epidemiologic studies
has received limited attention. In this study
we explored the effect of positional error in
geocoding using a case study of the exposure
potential of children at school locations to
traffic-related air pollution.

There are many potential problems with
geocoding, which have been well described in
the literature (Harries 1999; Krieger et al.
2001; Ratcliffe 2001; Rushton et al. 2006;
Whitsel et al. 2004). Research on the quality of
geocoding has emphasized a consideration of
completeness, positional accuracy, and repeata-

bility (Whitsel et al. 2004). The potential bias

and error introduced by variability in match
rates has received most attention (Hurley et al.
2003; Oliver et al. 2005). The effects of the
positional accuracy and repeatability of geocod-
ing has received limited attention and is there-
fore the subject of this study.

Several studies have determined quantita-
tive estimates of the positional accuracy of
geocoding. Estimates of typical positional
errors range from 38 to 75 m (Bonner et al.
2003; Cayo and Talbot 2003; Dearwent et al.
2001; Karimi and Durcik 2004; Ratcliffe
2001; Ward et al. 2005) based on mean or
median values. Results in urban areas are gen-
erally more accurate than in rural areas
(Bonner et al. 2003; Cayo and Talbot 2003;
Ward et al. 2005). This suggests that the posi-
tional error of geocoding can be substantial
and needs to be characterized in a meaningful
manner relevant to the use of the geocoded
locations. Particularly with reference to epi-
demiologic studies, when short distances are
associated with health effects, the geocoding
result must have a positional accuracy that is
sufficient to resolve whether such effects are
present (Rushton et al. 2006).

Vehicular traffic-related emissions are a
major source of air pollution, especially in
urban areas. Proximity to busy roads has been
associated with health effects in children, par-
ticularly respiratory symptoms and asthma
(Brauer et al. 2002; Brunekreef et al. 1997;
Ciccone et al. 1998; Edwards et al. 1994;
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Gauderman et al. 2005; Janssen et al. 2001;
Kim et al. 2004; Lewis et al. 2005; Morris
et al. 2000; Nicolai et al. 2003; van Vliet et al.
1997; Venn et al. 2000, 2001; Zmirnou et al.
2004). Several studies have also found associa-
tions between proximity to traffic and higher
rates of childhood cancer (Pearson et al. 2000;
Raaschou-Nielsen et al. 2001; Savitz and
Feingold 1989), but not all studies have been
conclusive in this regard (Langholz et al. 2002;
Reynolds et al. 2002).

Children were chosen as the subject of our
study because they represent the largest por-
tion of the population that is susceptible to
environmental health risks, and air pollution
in particular (Kim 2004; Schwartz 2004). The
selection of school locations reflects a long-
standing interest to consider time—activity pat-
terns in exposure assessment (Duan 1982;
Sexton and Ryan 1998). Many factors affect
the exact nature of time—activity patterns
(McCurdy and Graham 2003), but several
studies confirm that for children schools repre-
sent the second most important location (after
the home) to consider in environmental expo-
sure analysis (Klepeis et al. 2001; Leech et al.
2002; Schwab et al. 1992; Xue et al. 2004).

Many studies have documented that the
concentration of traffic pollution drops off
rapidly with increasing distance from the road
(Briggs et al. 2000; Gilbert et al. 2003, 2005;
Hitchins et al. 2000; Kuhler et al. 1988;
Morawska et al. 1999; Ross et al. 2006; Van
Vliet et al. 1997; Venn et al. 2001; Wrobel
et al. 2000; Zhu et al. 2002a, 2002b).
Concentrations are highest near roadways,
decrease rapidly after an exponential function,
and reach near-background levels at approxi-
mately 300-500 m from the road. Based on
this strong spatial gradient in pollutant
concentrations, measuring proximity to major
roads using GIS has become a widely
employed alternative to actual exposure moni-
toring. In a typical analysis scenario, one or
more buffer sizes are used to determine
whether geocoded locations fall within certain
distances from major roads. Most studies use
only a single buffer distance, including 100 m
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(Giordian et al. 2006), 150 m (Gauderman
et al. 2005; Green et al. 2004), 169 m (English
et al. 1999), 229 m (Wilhelm and Ritz 2003),
300 m (Zmirnou et al. 2004), and 457 m
(Langholz et al. 2002). Several other studies
have used multiple distances ranging from 30
to 300 m (Hoek et al. 2002; Lewis et al. 2005;
McConnell et al. 2006; Ong et al. 2006).
Although the use of discrete buffer distances
has been criticized for not capturing the true
distance—exposure relationship (Maantay 2002;
Zandbergen and Chakraborty 2006), their use
is justified by the strong empirical evidence
that pollutant concentrations follow a relatively
predictable and rapid decrease with distance.

Studies on the effect of traffic-related air
pollution have also considered traffic volume in
the determination of environmental exposure
conditions; adverse effects are observed for traf-
fic counts starting at about 25,000 vehicles per
day (Edwards et al.1994; English et al. 1999;
Wijst et al. 1993). This value has become the
lower exposure threshold used in studies that
have modeled the potential exposure based on
traffic counts and proximity (Green et al. 2004;
Houston et al. 2006; Ong et al. 2000).

Various proximity-based metrics have been
employed to relate traffic counts to exposure,
including distance to the nearest major roadway
with a high traffic count per day (Gauderman
et al. 2005; Green et al. 2004; Lewis et al.
2005), the sum of traffic count within a buffer
(Ong et al. 2006), distance-weighted traffic
density (English et al., 1999; Gauderman et al.
2005; Pearson et al. 2000; Wilhelm and Ritz,
2003; Zmirnou et al. 2004), and traffic count
at the nearest road (Raaschou-Nielsen et al.
2001). Studies comparing these traffic metrics
to actual exposure to traffic-related pollutants

have been few (Briggs et al. 2000; Gauderman
et al. 2005), but they suggest pollutant concen-
trations correlate with distance from nearest
road, traffic counts, and modeled air pollution.
The distance to major road metric has been
suggested as a reasonable, relatively easy-to-visu-
alize metric for descriptive purposes (Green
et al. 2004). Proximity to major roads is also
computationally easy to estimate from data that
are readily available compared with the meteo-
rologic and traffic volume data required to
model exposure conditions.

Several types of measurement error exist in
exposure assessment to traffic-related air pollu-
tion (Van Atten et al. 2005). For example,
Molitor et al. (2006) documented the effect of
missing exposure data at the individual level
and determined that the methodology chosen
to account for this missing data influences the
conclusions regarding the observed health
effects. Another type of measurement error is
the positional error in the various spatial data
sets used to derive exposure estimates, which is
the focus of this study.

Given that most studies on the exposure of
children to air pollution from traffic have used
relatively short distances of 50-500 m to major
roadways with traffic counts of = 25,000 vehi-
cles, the question arises whether the geocoded
locations of schools are accurate enough to
allow for this type of proximity analysis.
Several types of positional errors can be identi-
fied, including error in the major road network
used for vehicle counts, error in the street refer-
ence data used for geocoding, and error intro-
duced by the geocoding process.

The positional error of street reference
data is closely related to the scale of the data.
For example, data at a scale of 1:24,000 will

A Public schools
Major roads (AADT = 25,000)
Orange County
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Figure 1. Locations of schools and major road network in Orange County, Florida (major roads with AADT

= 25,000 vehicles per day).
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be accurate to within 12 m 90% of the time
based on National Map Accuracy Standards
(NMAS) (U.S. Geological Survey 1999).
The widely used Topologically Integrated
Geographic Encoding and Referencing
(TIGER) street data from the U.S. Census
Bureau meets the standard for 1:100,000
scale maps and will be accurate to within 50
m 90% of the time, although the most recent
versions of TIGER data are expected to be of
greater accuracy (U.S. Census Bureau 2000).

These errors are potentially additive, pre-
senting a major challenge to fine-scale analysis
which relies on small positional error. Of the
several types of errors listed above, only the
positional error of the major roads has
received attention in the literature on the
effects of traffic-related air pollution on chil-
dren (Ong et al. 2006; Wu et al. 2005). Both
these studies determined the reliability of
using moderately accurate street reference
data for geocoding by manually realigning it
with higher quality reference data. Geocoding
results were found to be very unreliable for
analysis using short distances.

The main objective of our study was to
determine the influence of the quality of
geocoding on the analysis of the effect of traf-
fic-related air pollution on children at school
locations. Two aspects of geocoding quality
are considered: positional accuracy (difference
between gecoded locations and the actual
school locations) and repeatability (difference
between the results of different geocoding
techniques). We selected school locations for
this study because they represent the second
most important location where children spend
their time, after the home residence, and
because geocoding has been widely employed
in studies that have tried to determine expo-
sure potential to air pollution at school loca-
tions (e.g., Chakraborty 2001; Green et al.
2004; Ong et al. 2006). We selected multiple
geocoding techniques to determine the sensi-
tivity of the results to variability in geocoding
quality. The first technique consists of using
county street centerlines. This represents the
highest quality street reference network avail-
able for free in most areas. The second tech-
nique consists of TIGER roads from the U.S.
Census Bureau (2000). Although its positional
and attribute accuracy is often inferior to that
of other data sources, it is a very widely used
data source for geocoding because it is free and
covers all of the United States. The third and
fourth techniques consist of using the services
of two commercial geocoding firms, a com-
mon practice among environmental exposure
researchers who need to geocode addresses.

Methods

The study design relies on a comparison
between the results of geocoding and the actual
school locations. We obtained addresses for all
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public schools in Orange County, Florida, for
2005 from the Orange County School Board
(2005). We determined the actual location of
each school by using a detailed 1:2,000 digital
parcel database for 2005 for Orange County
(Orange County Property Appraiser 2005).
We identified all 153 schools in this database
through manual searches based on the fields
for physical address and ownership (i.e.,
Orange County School Board). After we
identified the correct property, we overlaid the
parcel boundaries on digital 1-m color
orthophotography for 2005 in ArcGIS 9
(ESRI Inc., Redlands, CA). In this overlay the
parcel boundaries are shown and the aligned
imagery provides a detailed look at building(s)
at the school site. We used this overlay to man-
ually digitize the exact outline of the school
building(s). We then created a single centroid
from the digitized building(s) for each school
to represent the “true” location.

We geocoded the schools using a 1:5,000
street centerline network from Orange
County for 2005 (Orange County Growth
Management 2005) and the TIGER 2000
streets from the U.S. Census Bureau (2000),
both using ArcGIS 9. Identical settings were
employed, including address locator style,
field types used in the address locator, mini-
mum match score, and spelling sensitivity.
For any records that did not automatically
produce a reliable match, exhaustive manual
interactive matching was carried out to
achieve the highest possible number of reli-
able matches. We used a perpendicular offset
of 10 m in the placement of the geocoded
locations, based on the typical width of the
right-of-way of local roads of 15-20 m. We
also sent out the address file for processing to
two commercial geocoding firms, which we
refer to as Firm A and Firm B. It was not pos-
sible to specify geocoding settings, but we
used the final match codes to identify the
high-quality matches and used only those in
further analysis. Match rates for the four tech-
niques were 94.8% for street centerlines,
89.5% for TIGER roads, 90.2% for Firm A,
and 90.9% for Firm B. For the remainder of
the analysis, we used only records that could
reliably be geocoded using all four techniques
(n=126).

We determined the positional accuracy of
the geocoded locations by measuring the
straight-line distance between the geocoded
location and the actual location of the partic-
ular school. This was repeated for each of the
four sets of geocoded results. We character-
ized error distributions using descriptive sta-
tistics and cumulative distribution functions.

We determined exposure potential to traf-
fic-related air pollution using proximity to
high traffic intensity roads. We obtained a
detailed 1:24,000 road network for the State
of Florida from the Florida Department of

Transportation (FDOT 2005) with average
annual daily traffic (AADT) values for 2005
for each road segment. We selected road seg-
ments with an AADT of = 25,000 for further
analysis. For each school we determined the
straight-line distance to the nearest road seg-
ment using ArcGIS 9 for the actual location
as well as for the four geocoded locations. We
also created straight-line buffer zones around
the road segments with an AADT of 25,000
as discrete representations of distances com-
monly used in studies on traffic-related air
pollution. We used buffer radii of 50, 100,
150, 250, 500, and 1,000 m.

Figure 1 shows the actual locations of the
schools in Orange County as well as the
major road network with AADT values of
= 25,000 vehicles per day.

We determined bias and error introduced
by geocoding by comparing the results of
proximity analysis using the actual school
locations and the fours sets of geocoding
results. Specifically, we determined the num-
ber of correctly and incorrectly classified
schools using geocoding for the buffer zones
described above. This required determining
for each buffer zone which schools are actually
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located within that distance, which schools are
correctly classified as being located within that
distance using geocoding (confirmed posi-
tives), which schools are incorrectly classified
as being located outside that distance (false
negatives), which schools are incorrectly classi-
fied as being located within that distance (false
positives), and which schools are correctly clas-
sified as being located outside that distance
(confirmed negatives). We determined the
overall agreement between the results for
actual school locations and geocoded locations
for each distance using percentage false nega-
tives, percentage false positives, sensitivity, and
specificity. We repeated this analysis for each
of the four sets of geocoded locations.

Results

Figure 2 shows the cumulative distribution
functions of the positional error in the geocod-
ing results, and Table 1 provides descriptive
statistics. The first characteristic to notice is
the non-normal distribution of errors; the
mean is much higher than the median in all
four distributions, and the distributions are
highly skewed due to the occurrence of a small
number of very large error values.

Centerlines
TIGER
Firm A
FirmB

= T T T T
0 100 200 300 400

T T T T T
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1
1,000

Positional error (m)

Figure 2. Cumulative distribution functions of positional error in geocoded locations of schools in Orange

County, Florida (n=126).

Table 1. Summary statistics for the positional error (in meters) of geocoded locations of schools (n = 126)
in Orange County, Florida, using four different techniques.

Statistics Centerlines TIGER Firm A Firm B
Mean 219 351 300 461
Median 155 178 153 151
Standard deviation 272 604 602 2,330
Minimum 50 49 48 39
Maximum 2,302 4,379 5,565 2,596
90th percentile 21 271 238 218
95th percentile 227 302 255 237
95% RMSE? 196 306 235 210

a95% RMSE is the root mean square error of the error distribution after removing 5% outliers. It is more common to use
the 100% RMSE, but for non-normally distributed data the removal of 5% outliers before determining the RMSE value

produces a more robust accuracy statistic.
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The distributions are relatively similar for
the four techniques considered, but the error is
consistently larger for the TIGER results. For
example, the 50th percentile is 155 m for street
centerlines, 178 m for TIGER roads, 153 m
for Firm A, and 151 m for Firm B. At higher
percentiles, the curves are a bit further apart,
suggesting that street centerline geocoding is
the most accurate technique. For example, the

95th percentiles are 227 m for street center-
lines, 302 m for TIGER roads, 255 m for
Firm A, and 237 m for Firm B. To character-
ize the overall distribution the 95% root mean
square error (RMSE) is a robust statistic for
non-normally distributed positional errors; the
95% RMSE is 196 m for street centerlines,
306 m for TIGER roads, 235 m for Firm A,
and 210 m for Firm B. These results strongly
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Figure 3. Cumulative distribution functions of distance to major roads of school locations in Orange
County, Florida (n = 126) mapped using five different techniques.

suggest that the positional error in school loca-
tions for all types of geocoding is quite large,
and that the error is much higher when using
TIGER roads.

Figure 3 shows the cumulative distribu-
tion functions of the distance to the nearest
major road for the actual school locations and
the four sets of geocoded locations. These dis-
tributions can be used to examine bias. “Bias”
is defined here as a consistent over- or under-
estimation of the number of schools at risk. If
there were no bias, the curves would be nearly
identical, and any consistent difference would
indicate over- or underestimation. Figure 3
reveals that the curves for the four geocoding
techniques are consistently higher than the
curve for the actual school locations at most
distance values < 1,000 m. This indicates that
the geocoding results provide a consistent
overestimation of the potential schools at risk.
Comparing the results for the four sets of
geocoded locations reveals that the use of
TIGER roads results in the largest bias at
distances of up to 500 m.

Although the results in Figure 3 reveal the
bias introduced by geocoding, they do not
show the occurrence of error in the form of
false positives and negatives. Therefore, for
every buffer radius considered, we determined
the number of schools within that distance
using actual locations and the geocoded loca-
tions, as well as the agreement between the

Table 2. Bias and error in determining schools (n=126) at risk based on proximity to major roads in Orange County, Florida.

No. of schools within buffer zone

Measures of agreement

Geocoding type, School Street Confirmed False False Confirmed Prevalance False False Sensitivity Specificity
buffer radius (m) buildings  geocoding  positives  negatives  positives  negatives (%)2 negatives (%) positives (%)° (%)d (%)e
Street centerlines
50 1 3 0 1 3 122 0.79 0.79 2.38 0.00 97.60
100 3 5 1 2 4 119 2.38 1.59 3.17 33.33 96.75
150 6 9 4 2 5 115 476 1.59 397 66.67 95.83
250 17 20 12 5 8 101 13.49 397 6.35 70.59 92.66
500 44 44 42 2 2 80 34.92 1.59 1.59 95.45 97.56
1,000 69 71 66 3 5 52 5476 2.38 3.97 95.65 91.23
TIGER roads
50 1 9 0 1 9 116 0.79 0.79 7.14 0.00 92.80
100 3 15 1 2 14 109 2.38 1.59 1.1 33.33 88.62
150 6 20 4 2 16 104 476 1.59 12.70 66.67 86.67
250 17 29 13 4 16 93 13.49 3.17 12.70 76.47 85.32
500 44 46 40 4 6 76 34.92 3.17 476 90.91 92.68
1,000 69 70 67 2 3 54 54.76 1.59 2.38 97.10 94.74
Commercial Firm A
50 1 5 0 1 5 120 0.79 0.79 3.97 0.00 96.00
100 3 N 1 2 10 113 2.38 1.59 7.94 33.33 91.87
150 6 14 4 2 10 110 476 1.59 7.94 66.67 91.67
250 17 23 1 6 12 97 13.49 476 9.52 64.71 88.99
500 44 46 39 5 7 75 34.92 397 5.56 88.64 91.46
1,000 69 72 66 3 6 51 54.76 2.38 476 95.65 89.47
Commercial Firm B
50 1 3 0 1 3 122 0.79 0.79 2.38 0.00 97.60
100 3 8 2 1 6 17 2.38 0.79 476 66.67 95.12
150 6 12 5 1 7 113 476 0.79 5.56 83.33 94.17
250 17 22 10 7 12 97 13.49 5.56 9.52 58.82 88.99
500 44 48 43 1 5 77 34.92 0.79 397 97.73 93.90
1,000 69 72 67 2 5 52 54.76 1.59 3.97 97.10 91.23

aNumber of schools residing within the buffer radius as a percentage of all schools within the study area (n = 126). "Number of false negatives as a percentage of all schools within the
study area (n = 126). °Number of false positives as a percentage of all schools within the study area (n = 126). “Number of confirmed positives as a percentage of all schools within the
study area (n = 126). ®Number of confirmed negatives as a percentage of all schools within the study area (n=126).
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results in terms of correctly classifying schools.
Table 2 shows the results of this analysis.

Table 2 shows the number of schools
located within each buffer radius based on
actual and geocoded locations. For each of the
four sets of geocoded locations and for nearly
all distances considered, the number of schools
at risk is consistently higher using geocoded
locations than using actual locations, confirm-
ing the strong bias toward an overestimation of
the number of schools at risk as already shown
in Figure 3. Table 2 also shows the confirmed
positives, false negatives, false positives, and
confirmed negatives. The percentage of false
negatives and positives is calculated relative to
the total sample size (7 = 126). The percentage
false of positives is consistently higher than the
percentage of false negatives, confirming the
strong bias toward an overestimation of the
number of schools at risk.

Although the number of false positives
and negatives as a percentage of the total sam-
ple is relatively small, at short distances the
error in classification is very substantial. For
example, three schools are actually located
within 100 m of a major road, and street cen-
terline geocoding correctly identifies only one
of them. Centerline geocoding identifies four
other schools within 100 m, but these are all
false positives. This error is more formally
expressed in the measure for sensitivity, which
is the percentage of schools located within a
specific buffer radius that were correctly iden-
tified using geocoding. As can be seen in Table
2, the values for sensitivity are very low at
short distances and gradually increase to values
of 90% or higher at distances of 500-1,000
m. The very low values for sensitivity at short
distances strongly indicate that the results at
these distances are very unreliable. A final
measure of agreement is the specificity, which
is the percentage of schools located outside a
specified buffer radius that are correctly identi-
fied using geocoding. Values are consistently
high, with most values > 90% at all distances
considered. This is largely owing to that fact
that although the identification of schools at
risk is very unreliable at short distances, their
prevalence is quite low.

When comparing the results of the four
geocoding techniques, the results using
TIGER roads are the least reliable, with the
highest counts of false positives and the low-
est values for sensitivity and specificity.
Results from Firm A are the second least reli-
able, with the second highest counts of false
positives and the second lowest values for sen-
sitivity and specificity. Results for street cen-
terlines and commercial Firm A are very
similar, and a determination of which method
is most reliable varies with the exact distance
value and parameter chosen.

The results in Table 2 strongly suggest
that the identification of schools at risk based

on proximity is unreliable at short distances.
This raises an important question: At what
distance, if any, the results do become reli-
able? We use the measure for sensitivity to try
to answer this. If a value of 90% for sensitiv-
ity is deemed acceptable, the minimum dis-
tance needed to achieve reliable results is
500 m for street centerlines, TIGER, and
Firm B, and 1,000 m for Firm A. If a value of
95% is used, the minimum distance is 500 m
for street centerlines and Firm B, and 1,000
m for TIGER and Firm A. These results sug-
gest that the reliability of proximity-based
identification of schools at risk varies with
geocoding quality, but that overall the results
are not reliable at distances < 500 m.

Discussion

The positional error in geocoded locations of
schools was very high relative to the accuracy
requirements for fine-scale proximity analysis;
a median error of 155 m for street centerline
geocoding, 178 m for TIGER roads, 153 m
for Firm A, and 151 m for Firm B, and 95%
RMSE values of 196, 306, 235 and 210 m,
respectively. These estimates are substantially

higher than those found in previous studies
(Bonner et al. 2003; Cayo and Talbot 2003;
Dearwent et al. 2001), which have looked
mostly at residential addresses. The larger
positional errors for schools are a result of the
much larger parcels on which most schools
are located, relative to residential properties.
Both larger parcel sizes and variability in par-
cel size along a street segment can contribute
to larger positional errors.

The amount of bias and error introduced
by the positional error in geocoding is sub-
stantial. As a general rule, spatial data must be
much more accurate than the minimum dis-
tance used in spatial analysis for the results to
be meaningful (Diggle 1993; Waller 1996);
this rule is clearly not met when using the
results of geocoding of schools in fine-scale
analysis in the order of 100 or even several
hundred meters.

Figure 4 shows the geocoding results for
selected areas that we use to discuss several
common scenarios. In each of the four scenar-
ios the school building centroid and the
geocoded locations are shown, in addition to
the street centerlines, TIGER road, and the

| Meters
0 100 200 400 600 800 0 100 200 400
M School building Major roads (AADT = 25,000) "
@ Geocoded: Centerlines ——— Street centerlines
© Geocoded: TIGER TIGER roads w E
@ Geocoded: Firm A
@ Geocoded: Firm B s

Figure 4. Examples of positional error in geocoding of school locations in Orange County, Florida. (A) Effect
of driveway. (B) Misplacement along street segment. (C) Effect of parcel size. (D) Combined effects.
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major roadways (AADT = 25,000). Street ref-
erence networks from the commercial firms
are not available, but the placement of the
geocoded locations suggests they are relatively
similar to the street centerlines.

The first general observation from Figure
4 is the influence of the positional accuracy of
the street network. The street centerlines are
almost perfectly aligned with the aerial
imagery, suggesting a very high positional
accuracy. This suggests that the positional
error in geocoding using this reference net-
work is largely attributed to the errors in the
placement of the geocoded location along the
street segments, not the position of the net-
work itself. The positional error in the
TIGER roads, however, is substantial, and
misalignment with the imagery is observed
for almost every segment. Errors up to 50 m
are very common, and errors of several hun-
dred meters also occur. This explain the much
larger positional error found in the geocoding
results using TIGER roads.

A related observation from Figure 4 is the
influence of the positional accuracy of the
major road network. In most of the study area
the major road network is very well aligned
with the imagery and is a near-perfect match
with the street centerlines. This suggests that,
except for TIGER roads, misalignment of
spatial data sets is not a significant factor, as it
was in previous studies (Ong et al. 2006; Wu
et al. 2005). Also, very few schools are located
directly on major roads; most are located on
side streets of major roads, making the place-
ment along the side street relative to the
major roads the critical factor in correctly
identifying schools at risk.

Figure 4A shows a typical scenario where
the geocoded locations are in relatively close
proximity to each other, but at some distance
from the actual school. There are several fac-
tors at work here. First, there is the “drive-
way” effect: Many schools are located on a
fairly large parcel and a private driveway leads
from the road to the actual building. This dri-
veway does not appear in street network data.
So even if a geocoded location were directly
in front of the school parcel, it would be at
some distance from the actual building.
Second, there is misplacement along the street
network, as evidenced in particular for the
result for Firm B in Figure 4A. Geocoding
relies on linear interpolation of the actual
address within the address range for the street
segment. If the address range for the segment
does not reflect the true addresses, or the
parcels along the segment are not uniform,
locations are misplaced along the segment rel-
ative to the actual location. As a result of
these two effects, all geocoded locations in
Figure 4A are placed closer to the major road
than the actual school building, resulting in a
(potential) false positive. This particular

1368

scenario accounts for most false positives in
our study.

Figure 4B shows a scenario similar to 4A,
but in this case the geocoded locations are
further away from the major road than the
actual school location, resulting in a (poten-
tial) false negative. This particular scenario
accounts for most false negatives in our study.
Figure 4B also illustrates the substantial error
in the TIGER roads, which in this case trans-
lates in only a minor additional error in the
geocoding results.

Figure 4C illustrates a scenario where the
school is located on a very large parcel, resulting
in substantial driveway effect. In this case the
actual school buildings are much closer to the
major roadway, producing a (potential) false
negative. This scenario illustrates that even the
most accurate geocoding result (i.e., a location
mapped directly in front of or inside the school
parcel) does not capture the school location suf-
ficiently accurate for fine-scale proximity analy-
sis. The scenario again illustrates the substantial
error in the TIGER results.

Figure 4D illustrates a scenario where the
driveway effect is limited, but the placement
of the geocoded locations along the segment
varies substantially among the four tech-
niques. Results for street centerlines and Firm
B are quite accurate, resulting in a correct
classification of whether the school is at risk.
Results for TIGER and Firm A are placed at
several hundred meters from the actual school
location, resulting in incorrect classification.

When comparing the four different sets of
geocoded locations in Figure 4, some relevant
patterns emerge. First, results for street cen-
terlines and Firm B are consistently close to
each other and typically the most accurate rel-
ative to the actual school location. This sug-
gests a high degree of repeatability of
geocoding when considering only these two
techniques. Results for Firm A are typically at
some distance from the previous two loca-
tions along the same street segment, and typi-
cally at a larger distance from the actual
location. Results for TIGER show much
more variability, with several locations being
placed incorrectly due to both positional and
attribute errors in the TIGER roads. These
examples illustrate the general findings for
positional errors in the geocoding results and
the reliability of the proximity-based exposure
analysis: Street centerlines and Firm B are
most accurate and reliable, followed by Firm
A, with TIGER a distant fourth.

One final pattern that emerges from the
four scenarios is that most of the error in the
classification of schools results from errors in
the placement of the geocoded locations
along the street segment, not from the error
in the distance from the road. This is clearly
illustrated in Figures 4A—C, where placing the
geocoded locations at the same distance from

the road as the actual school location would
not improve the correct identification of
schools at risk. This is a result of the fact that
in our study area very few schools are located
directly on a major road with high traffic den-
sities but instead on side streets perpendicular
to major roads.

The four scenarios presented in Figure 4
all contribute to errors in the proximity analy-
sis in the form of false positives and negatives.
If these errors were strictly random, the num-
ber of false positives and negatives would be
the same. However, we observed a consistent
bias in the results of the proximity analysis
with many more false positives than false neg-
atives. The scenarios in Figures 4A and 4D
contribute to false positives, and an inspec-
tion of the entire data set reveals that these are
in fact the most common scenarios for false
positives. The observed bias in the proximity
analysis, therefore, is a result of a combination
of positional and attribute errors in the street
reference data, limitations of the linear inter-
polation algorithm used in geocoding, and
the inherent limitations of a street network to
capture the actual locations of school build-
ings located on large parcels.

When considering the results for the four
sets of geocoded locations, several observations
regarding the accuracy and repeatability of
geocoding emerge. First, the results from the
TIGER 2000 roads were by far the least accu-
rate, and the use of these data for fine-scale
spatial analysis should be discouraged despite
their widespread availability and low cost.
When updated versions of the TIGER data
become available for a particular area, they
should be checked to determine whether they
provide improved accuracy and reliability.
Second, the differences between the results
from the two commercial geocoding firms sug-
gest a substantial lack of repeatability, which is
not reflected in the cost (Firm B was more
accurate and cheaper). Commercial geocoding
is available for most areas at relatively low cost,
but results typically do not include a measure
of positional accuracy, and their use for fine-
scale analysis needs to be carefully considered.
Third, the use of street centerlines produced
the most accurate and reliable results (and
results for Firm B were very similar), but this
type of data may not be available everywhere,
and their quality may vary between jurisdic-
tions, limiting usefulness for larger data sets
across multiple jurisdictions.

One very important limitation of this
study is that school locations are somewhat
unusual in that they are typically located on
large parcels relative to other types of locations
(such a private residences). As a result, even a
geocoded location very close to or inside the
correct parcel may be at a substantial distance
from the actual school building(s). The pres-
ence of large parcels along a street segment
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also causes errors in the linear interpolation
used in the placement of geocoded locations
along the street segment. In addition, many
schools in suburban areas are off-set from the
street with a private driveway. Combined,
these factors result in large positional errors in
geocoded locations. These errors are typically
larger than for other types of locations. For
example, Cayo and Talbot (2003) determined
the positional error of private residences using
the same technique (distance between
geocoded locations and building centroid)
across an urban—rural gradient and found a
median positional error of 38 m for urban
areas, 78 m for suburban areas, and 201 m for
rural areas. Values for the 90th percentile were
96, 306 and 1,544 m, respectively. The
schools in our study are located mostly in sub-
urban areas, and results for the most accurate
geocoding using street centerlines produced a
mean of 155 m and a 90th percentile of
211 m. The results for the school locations in
our study are substantially less accurate than
private residences in typical urban and subur-
ban areas, but more accurate than those in
rural areas. Based on these error values, there-
fore, the observed bias and error in the prox-
imity-based exposure analysis is likely to be
less for private residences in urban areas, but
still substantial at short distances of 100 or
possibly several hundred meters. The results
for other types of locations, however—such as
hospitals, shopping malls, apartment com-
plexes, businesses, office parks—are more
likely to be similar to those found in our study
for schools because they share the same char-
acteristics of large parcels and private drive-
ways or access roads.

A second limitation is that our study
employed only a relatively small sample of
schools for a single county. As a result, our
findings are limited to similar areas where
schools are located primarily in suburban
areas on relatively large parcels. Positional
errors in geocoding in higher-density urban
areas are likely to be smaller, with correspond-
ing lower bias and error in proximity-based
analysis of environmental exposure. A related
limitation is the fact that the study area is
located in the United States and that the
geocoding results therefore are typical for the
street reference data commonly available in
the United States. Results in other jurisdic-
tions may be more reliable if more accurate
geocoding techniques are available.

Conclusions

Positional errors in geocoding of school loca-
tions introduce substantial bias and error in
the analysis of the effects of traffic-related air
pollution on children. Alternatives to street
geocoding need to be considered, including
parcel-based geocoding, address point geo-
coding, the use of ortho-imagery, and field

observations using global positioning systems.
Digital parcel data in GIS format and high
resolution ortho-imagery are becoming more
widely available, although coverage might be
spotty across a large study area of multiple
jurisdictions. The skill level required to use
these types of data in GIS is not much higher
than that needed for street geocoding, and the
data are mostly available for free. However,
the effort required to compile and process
these detailed data is substantial, and presents
a major barrier to more widespread adoption.
For very large data sets, including those cover-
ing more than a few individual counties,
street geocoding is likely to remain a more
cost-effective solution.

The widespread availability of powerful
geocoding tools in commercial GIS software
and the interest in spatial analysis at the indi-
vidual level have made address geocoding a
widely employed technique in epidemiologic
studies. Although some of the limitations of
geocoding have been addressed in recent review
articles in public health and epidemiology jour-
nals (McElroy et al. 2003; Rushton et al.
2006), most studies have employed geocoding
without much consideration of its inherent lim-
itations. Match rates have received most recog-
nition, and the positional error has been
assumed to be small in magnitude and random
in its effect on analysis results. We have shown
in this study that the positional error in geocod-
ing is neither small nor random, and that cau-
tion in the use of geocoding results for
epidemiologic studies is warranted. TIGER
data in particular are prone to very large errors.

Limitations of this study include the
unique nature of school locations, which
results in larger errors than are typically
encountered for residential locations, and the
fact that only a single county in the United
States was considered. Despite these limita-
tions, the study provides insights into the
nature of the errors that can be expected for
other types of locations and jurisdictions.

Geocoding is very appealing as a data pro-
cessing step because it provides a high degree
of automation, but the results are not accom-
panied by reliability estimates for its quality
other than match scores. The use of street ref-
erence data of high positional accuracy and
currency is also no guarantee the positional
accuracy of geocoding will be sufficient, and
the use of alternatives should be considered
when fine-scale analysis is required.
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