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Impairment of NO-Dependent Relaxation in Intralobar Pulmonary Arteries:
Comparison of Urban Particulate Matter and Manufactured Nanoparticles
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BACKGROUND AND OBJECTIVES: Because pulmonary circulation is the primary vascular target of
inhaled particulate matter (PM), and nitric oxide is a major vasculoprotective agent, in this study
we investigated the effect of various particles on the NO—cyclic guanosine monophosphate (cGMP)
pathway in pulmonary arteries.

METHODS: We used intrapulmonary arteries and/or endothelial cells, either exposed i vitro to par-
ticles or removed from PM-instilled animals for assessment of vasomotricity, cGMP and reactive
oxygen species (ROS) levels, and cytokine/chemokine release.

REsuULTS: Endothelial NO-dependent relaxation and cGMP accumulation induced by acetylcholine
(ACh) were both decreased after 24 hr exposure of rat intrapulmonary arteries to standard reference
material 1648 (SRM1648; urban PM). Relaxation due to NO donors was also decreased by
SRM1648, whereas responsiveness to cGMP analogue remained unaffected. Unlike SRM 1648,
ultrafine carbon black and ultrafine and fine titanium dioxide (TiO,) manufactured particles did
not impair NO-mediated relaxation. SRM1648-induced decrease in relaxation response to ACh
was prevented by dexamethasone (an anti-inflammatory agent) but not by antioxidants.
Accordingly, SRM1648 increased the release of proinflammatory mediators (tumor necrosis factor-
a, interleukin-8) from intrapulmonary arteries or pulmonary artery endothelial cells, but did not
elevate ROS levels within intrapulmonary arteries. Decreased relaxation in response to ACh was
also evidenced in intrapulmonary arteries removed from rats intratracheally instilled with
SRM1648, but not with fine TiO,.

CONCLUSION: In contrast to manufactured particles (including nanoparticles), urban PM impairs
NO but not cGMP responsiveness in intrapulmonary arteries. We attribute this effect to oxidative-
stress—independent inflammatory response, resulting in decreased guanylyl cyclase activation by
NO. Such impairment of the NO pathway may contribute to urban-PM—induced cardiovascular
dysfunction.
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Epidemiologic studies demonstrate a correlation
between exposure to particulate matter (PM)
pollution and cardiovascular morbidity (Hoek
et al. 2001) and mortality (Pope et al. 2002).
PM is heterogeneous in size (acrodynamic
diameter < 0.1 pm for ultrafine, PMg 15 < 2.5
pm for fine, PM; 5; < 10 pm for coarse,
PM) and in composition (with various
adsorbed constituents, e.g., transition metals
and inorganic and organic compounds).
Among other adverse effects, exposure to
PM may induce pulmonary and systemic
inflammation and dysfunction (Salvi et al.
1999). Two major hypotheses, which are not
mutually exclusive, have been proposed to
account for the effects of inhaled particles
that can deeply penetrate into the lungs. One
hypothesis is that, once deposited into the
lung, particles initiate a local inflammation,
which triggers a secondary systemic inflam-
mation that could exacerbate cardiovascular
dysfunctions (Seaton et al. 1995). Another
hypothesis, although controversial, involves
the documented passage of the finest parti-
cles, especially nanoparticles, into the blood
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after inhalation (Nemmar et al. 2001, 2002;
Wiebert et al. 2006), suggesting direct effects
of translocated particles, or of some of their
constituents, on remote target tissues.
Constriction of systemic or pulmonary
arteries in response to PM is generally observed
in 7n vitro and in vivo animal and human stud-
ies (Batalha et al. 2002; Brook et al. 2002;
Huang et al. 2002; Li et al. 2005). Exposure to
PM also induces a decrease in endothelium-
dependent relaxation in systemic arteries
(Ikeda et al. 1995; Nurkiewicz et al. 2004,
2006). Nitric oxide is a major endothelium-
derived vasculoprotective factor that, among
other effects (Gewaltig and Kojda 2002),
decreases vascular tone through heme-depen-
dent stimulation of soluble guanylyl cyclase
and subsequent activation of cyclic guanosine
monophosphate (cGMP)-dependent protein
kinases (Schlossmann et al. 2003). A decrease
in endothelial NO production and/or bioactiv-
ity is a key event in the pathogenesis of many
cardiovascular disorders (Li and Forstermann
2000). Inflammation and oxidative stress, two
major effects accounting for some adverse

effects of PM (Bai et al. 2007; Oberdorster
et al. 2005), play a central role in endothelial
dysfunction in many pathologic blood vessels
(Feletou and Vanhoutte 2006), including pul-
monary arteries (Fresquet et al. 2000).
Although impairment of NO-dependent path-
way may contribute to deleterious effects of
PM on the cardiovascular system, this issue has
never been specifically addressed in pulmonary
circulation, which is a primary target of
inhaled particles.

Therefore, in this study we investigated the
influence of PM on the NO-cGMP relaxant
pathway in intrapulmonary arteries. We inves-
tigated urban PM [standard reference material
1648 (SRM1648)] and manufactured carbon
black and titanium dioxide (TiO,) nanoparti-
cles, which, unlike SRM 16438, are relatively
free of adsorbed constituents.

Materials and Methods

Chemicals. We obtained drugs and reagents
from Sigma Chemical Co. (St. Quentin-
Fallavier, France), except 2-(N,N-Diethyl-
amino)-diazenolate-2-oxide.diethylammoniu
m salt (DEA-NO) and 3-(5-hydroxymethyl-
2’-furyl)-1-benzylindazole (YC-1), from
Alexis Biochemicals (San Diego, CA, USA);
1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one
(ODQ), from Tocris Bioscience (Bristol,
UK); prostaglandin F,, (PGF,; dinoprost),
ketamine, and xylazine, from Centravet
(Libourne, France); and dihydroethidium
(DHE), from Molecular Probes (Cergy-
Pontoise, France).

Particulate matter. We purchased
SRM1648 from the National Institute of
Standards and Technology (Gaithersburg,
MD, USA). Physical and chemical properties
of SRM1648 have been previously described
(Becker et al. 1996). The particles have a
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mean diameter of 0.4 pm and consist of
> 63% inorganic carbon and 4-7% organic
carbon. Major constituent elements (> 1%
mass fraction) are silicon, sulfur, aluminum,
iron, potassium, and sodium.

Other particles we used in this study
included ultrafine carbon black (ufcb) FW2 and
P60 (from Degussa, Frankfurt, Germany), with
average primary particle sizes of 13 and 21 nm,
respectively. We obtained ultrafine TiO,
(ufTiOy; average primary particle size, 15 nm)
and fine TiO, (fTiO,; mean diameter, 0.14
pm, determined by transmission electron
microscopy) from Sigma. Before experiments,
we freshly suspended particles (10 mg/mL) in
distilled deionized water. We chose the concen-
trations of PM for 7n vitro or in vivo experiments
based on the literature (Li et al. 2005, 20006;
Mutlu et al. 2007; Nurkiewicz et al. 2004).

Animals, exposure to particles, and tissue
preparation. Male Wistar rats (12-14 weeks
old; Elevage Janvier, Le Genest Saint Isle,
France) were treated humanely and with
regard for the alleviation of suffering, accord-
ing to the Guide for the Care and Use of
Laboratory Animals (Institute of Laboratory
Animal Resources 1996). We dissected intra-
pulmonary arteries as previously described
(Leblais et al. 2004). For in vitro experiments,
we incubated segments in Dulbecco’s modi-
fied Eagle’s medium (DMEM), in absence or
presence of particles, for 24 hr at 37°C in a
humidified atmosphere (95% air/5% carbon
dioxide). In some experiments, we added dex-
amethasone (10 pM), tempol (1 mM), or
ascorbate (200 pM) to DMEM for the 24-hr
incubation period. We anesthetized some rats
by intraperitoneal injection of ketamine (50
mg/kg) and xylazine (4 mg/kg), and intratra-
cheally instilled them with 5 mg SRM1648 or
fTi0, in 500 pL saline (NaCl 0.9%), or with
saline alone. After a recovery period (6-72
hr), we euthanized rats and removed lungs.
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Measurements of isometric tension. We
mounted arterial segments in a myograph as
previously described (Leblais et al. 2004). In
some cases, we removed endothelium before
mounting, by perfusion with the nondenatu-
rating zwitterionic detergent 3-[(3-cholamido-
propyl)dimethylammonio]-1-propanesulfonate
(CHAPS) (Pourageaud et al. 2005). We eval-
uated viability of arteries using physiological
salt solution (PSS) containing 80 mM KCI
(equimolar substitution with NaCl). We dis-
carded preparations that developed a wall ten-
sion < 1 mN/mm. Endothelium removal or
loss of NO-synthase functionality was evi-
denced when, after treatment with CHAPS or
with the NO-synthase inhibitor N,-nitro-L-
arginine methylester (L-NAME; 300 pM), the
reference endothelium-dependent relaxant
agent acetylcholine (ACh; 30 pM) elicited
< 5% relaxation after submaximal precontrac-
tion with PGF,,, (10 pM).

We exposed intrapulmonary arteries to
KCI (5-100 mM) or PGF,, (30 nM to
30 uM). After washout, we submaximally con-
tracted them with PGF,, to achieve approxi-
mately 50% of the tension obtained with
80 mM KCI. Once we obtained stable contrac-
tion, we added cumulative concentrations of
ACh, sodium nitroprusside (SNP), DEA-NO,
8-bromo-cGMP (8-Br-cGMP), YC-1, isopro-
terenol, forskolin, or leveromakalim. Figure 1A
illustrates the targets of drugs activating the
NO-cGMP pathway. We used YC-1 to
activate soluble guanylyl cyclase in an NO-
independent manner. However, this com-
pound also increases the sensitivity of the
enzyme to NO (Friebe and Koesling 2003).
To minimize the influence of the latter mecha-
nism, we studied effect of YC-1 in endothe-
lium-denuded arteries treated with ODQ, an
irreversible inhibitor of NO-dependent activa-
tion of soluble guanylyl cyclase. When we
studied isoproterenol, we pretreated arteries

with phenoxybenzamine (1 pM) to irreversibly
inactivate a-adrenoceptors (Pourageaud et al.
2005). In some experiments, we added tempol
(1 mM) to the organ bath before precontrac-
tion with PGF,,.

Detection of reactive oxygen species. We
prepared sections of intrapulmonary arteries
and exposed them to the fluorescent dye
DHE (2.5 uM) as previously described
(Fresquet et al. 2006). We examined slides
under a laser scanning confocal microscope
equipped with a krypton/argon laser (excita-
tion, 488 nm; emission, 610 nm) and
obtained final images after stacking.

Histologic studies. We fixed lungs from
SRM1648-instilled rats in phosphate-buffered
saline (pH 7.4) containing 4% formaldehyde.
We stained paraffin-embedded histologic sec-
tions (3 pm thick) with hematoxylin, eosin,
and saffron (HES) and examined them under
optical light microscope.

Pulmonary endothelial cells. We opened
intrapulmonary arteries from bovine lung
(obtained from a local slaughterhouse) longi-
tudinally, digested their intimal surface with
collagenase, and gently scraped them to
remove endothelial cells (adapted from Zhao
et al. 2005). We separated endothelial cells by
immunomagnetic beads (Dynabeads; Dynal
Biotech, Compitgne, France) coated with
CD31 antibody and assessed purity by CD31
and endothelial NO-synthase immunostain-
ing. We seeded cells at 10° cells/mL in
MCDB 131 medium, supplemented with
100 U/mL penicillin and 100 pg/mL strepto-
mycin, 2 mM glutamin, 10% (vol/vol) fetal
bovine serum, 10 pg/mL vascular endothelial
growth factor (Invitrogen, Cergy Pontoise,
France), and 500 U/mL heparin, 30 mM
HEPES, 1 pg/mL endothelial cells growth sup-
plement (Sigma Chemical Co., St Quentin-
Fallavier, France), and cultured them at 37°C
in 5% CO,.

[ACh]
107 M

10°M
10°M

T
0 1,000

T T T
2,000 3,000 4,000

Time (sec)

Figure 1. (A) Schematic representation of the NO—cGMP relaxant pathway. Bold arrows indicate targets of the different drugs we used. (B) Wall tension record-
ings of the effect of ACh in PGF,,-precontracted rat intrapulmonary arteries incubated for 24 hr in the absence (black trace) or presence (gray trace) of SRM1648
(200 pg/mL). Oscillations during contraction are not a characteristic feature of SRM1648-exposed arteries, because we also observed them in unexposed arteries.
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Figure 2. (A) Relaxant effect of ACh, SNP, DEA-NO, 8-Br-cGMP, or YC-1 in rat intrapulmonary arteries

0.5

o
|

25

50

75

100

25

50

75

100

25

50

75

100

—log [DEA-NO] (M)

§
e

T T
6 5

T T
4 3

—log [8-Br-cGMP] (M)

*

B

ACh

ACh + SRM1648

Percent relaxation

Percent relaxation

—log [SNP] (M)

® 4« b B O

Control

SRM1648 (10 pg/mL)
SRM1648 (50 pg/mL)
SRM1648 (100 pg/mL)
SRM1648 (200 pg/mL)

50+

75

100

~

—log [YC-1] (M)

incubated for 24 hr in the absence (control) or presence of SRM1648 (at the indicated concentrations).
Data are mean + SE from 4-10 rats. (B) Levels of cGMP in rat intrapulmonary arteries incubated in the

absence (white bar) or in the presence of SRM1648 (200 ug/ml for 24 hr, black bar) and subsequently

exposed to ACh (10 pM). Data are mean + SE from six rats. NS, not significant.
*p<0.05 **p<0.01.

Percent relaxation IE‘

o
|

25

50

75

N

O Control
® SRM1648

T T
9 8

-log [isoproterenol] (M)

Percent relaxation n

o
1

]
S
I

o
S
1

~
=]
1

=]
S

.Xété

N

\Q

4
\‘?

T
9 8

T
7

T
6

—log [forskolin] (M)

5

s

NS

Cytokines, chemokines, and cGMP deter-
minations. We stored incubation media from
intrapulmonary arteries or subconfluent
endothelial cells (used at their second passage),
exposed or not to SRM1648 (200 pg/mL for
24 hr), at —20°C for subsequent determination
of tumor necrosis factor-o. (TNF-a.), inter-
leukin-8 (IL-8), or macrophage inflammatory
protein-2 (MIP2; the functional analog of IL-
8) using enzyme-linked immunosorbent assay
(ELISA) kits (R&D Systems Europe, Lille,
France). We then transferred arteries to PSS
(at 37°C, under bubbling with carbogen) con-
taining ACh (10 pM) and the phosphodi-
esterase inhibitor isobutylmethylxanthine
(100 uM). After 15 min, we froze arteries,
stored them in liquid nitrogen, and then
homogenized them in ice-cold trichloroacetic
acid (6%). We determined content of cGMP
using an ELISA kit (Cayman Chemical Co.,
Ann Arbor, MI, USA). We normalized
TNF-a, MIP2, and cGMP levels to tissue
protein content, the latter determined by the
Lowry method (Lowry et al. 1951).

Statistical analysis. We expressed relax-
ation responses as the percentages of the ini-
tial tone induced by PGF,; all data are
means + SE from 7 rats. We compared con-
centration—response curves using two-way
analysis of variance (ANOVA) and performed
other statistical comparisons with one-way
ANOVA. We considered differences statisti-
cally significant when p < 0.05.

Results

SRM1648 selectively impairs NO responsive-
ness. After 24-hr preincubation without parti-
cles, maximal relaxation to 30 pM ACh was
50.02 + 3.03% (7 = 25). Such relaxation was
slightly lower than that obtained in freshly iso-
lated tissue (in which maximum reaches about
75%), as observed in other arterial models
(Jiménez-Altayé et al. 2006). Nevertheless, the
effect of ACh was almost totally abolished by
the NO-synthase inhibitor L-NAME (5.0 +
3.6% relaxation with 30 uM ACh plus 300 pM
L-NAME, 7 = 4) or after endothelium removal
with CHAPS (1.0 = 1.7% relaxation with
30 pM ACh, 7 = 4). Neither contractile nor

endothelium-independent relaxation maximal
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Figure 3. Relaxant effect of isoproterenol (4), forskolin (B), or levcromakalim (C) in rat intrapulmonary arteries incubated for 24 hr in the absence (control) or pres-
ence of 200 pg/mL SRM1648. Data are mean + SE from four or five rats. NS, not significant.
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capacity of arteries was altered by endothelium
removal, because effects of KCI (80 mM) and
of the NO donor SNP (10 pM) were not sig-
nificantly different between CHAPS-treated
and untreated arteries (data not shown).
Preincubation of rat intrapulmonary
arteries for 24 hr with SRM1648 did not
modify contraction to KCl (5-100 mM) or
PGF,, (30 nM to 30 pM) (data not shown).
We observed a significant decrease in ACh-
induced relaxation in intrapulmonary arteries
after 24-hr exposure to SRM1648 at concen-
trations = 100 pg/mL (Figures 1B, 2A). ACh-
induced ¢cGMP accumulation was also
diminished in intrapulmonary arteries after
exposure to 200 pg/mL SRM1648 (Figure
2B). Relaxation induced by either SNP or
DEA-NO, two compounds releasing NO by
distinct mechanisms (which might explain
differences in their respective maximal effect),
was diminished after exposure to 200 pg/mL
SRM1648, whereas relaxation to 8-Br-
c¢GMP, a membrane-permeable cGMP analog
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that directly stimulates cGMP-dependent
protein kinase, or to YC-1, an activator of sol-
uble guanylyl cyclase, remained unaffected
(Figure 2A).

We studied other vasorelaxing agents for
comparison. As shown in Figure 3, SRM1648
(200 pg/mL) did not modify relaxation to iso-
proterenol (which induces relaxation of rat
intrapulmonary artery through activation of
B,-adrenergic receptor; Pourageaud et al.
2005), forskolin (adenylyl cyclase activator), or
leveromakalim [a Kprp (ATP-sensitive K(+)
channels) activator].

Nanoparticles ufch or ufTiO,, as well as
[fTiO,, do not impair NO responsiveness. For
comparison with SRM 1648, we studied the
effects of ufcb, ufTiO,, and fTiO,. As shown in
Figure 4, exposure of intrapulmonary arteries for
24 hr to these particles at 200 pg/mL did not
significantly impair ACh-induced relaxation.

SRM1648 impairs NO responsiveness
through oxidative-stress—independent inflamma-
tory response. The steroidal anti-inflammatory
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Figure 4. Relaxant effect of ACh in rat intrapulmonary arteries incubated for 24 hr in the absence (control)
or presence of 200 ug/mL P60 ufcb (A), FW2 ufcb (B), fTi0, (C), or ufTiO, (D). Data are mean + SE from four

or five rats. NS, not significant.
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agent dexamethasone (10 pM, added con-
comitantly to SRM1648) fully prevented
SRM1648-induced impairment of the relaxa-
tion response to ACh in intrapulmonary arter-
ies, without modifying its relaxant effect in
untreated arteries (Figure 5A). Exposure of
intrapulmonary arteries to SRM1648 (200
pg/mL) resulted in an increased release of the
pro-inflammatory mediators TNF-at and MIP2
(Figure 5B), the functional analogue of human
IL-8. We also observed an increased level of
IL-8 in incubation medium of pulmonary
artery endothelial cells that we exposed to
SRM1648 (200 pg/mL for 24 hr) (Figure 5C).

When added concomitantly to SRM1648,
the antioxidants tempol (1 mM) and ascorbate
(200 pM) failed to modify effect of ACh
(Figure 6A). Similarly, tempol did not modify
the effect of ACh when added to SRM1648-
pretreated arteries 15 min before precontrac-
tion with PGF,,, (Figure 6A). Compared with
untreated intrapulmonary arteries, those
exposed to SRM1648 did not exhibit elevated
levels of reactive oxygen species (ROS), as
determined using the fluorescent probe DHE
(Figure 6B).

In vivo exposure to SRM1648, but not
fTiOy, impairs NO responsiveness. The pres-
ence of particles (arrows, Figure 7A) was
clearly evidenced in lung parenchyma
removed 12 or 72 hr after intratracheal instil-
lation of SRM1648. In arteries isolated from
SRM1648-instilled animals (12 hr before),
relaxation response to ACh was significantly
decreased compared with responses obtained
in control rats (Figure 7B). No impairment
of ACh-induced relaxation was evidenced
after shorter (6 hr) or longer (24 or 72 hr)
recovery delay after intratracheal instillation
of SRM 1648 (data not shown). In contrast,
intratracheal instillation of fTiO; (5 mg,
12 hr before) did not modify ACh-induced
relaxation (Figure 7B).

Discussion

This study shows, for the first time to the best
of our knowledge, that urban PM impairs NO-
dependent relaxation in small intrapulmonary
arteries, not only after iz vitro exposure, but

I
* 20

Control SRM1648 Control

SRM1648 Control SRM1648

Figure 5. (A) Relaxant effect of ACh in rat intrapulmonary arteries incubated for 24 hr in the absence (control) or presence of dexamethasone (10 uM), SRM1648
(200 pg/mL), or SRM1648 (200 pg/mL) plus dexamethasone (10 uM). Data are mean = SE from 4 or 5 rats. (B) TNF-a. and MIP2 release from rat intrapulmonary
arteries incubated for 24 hr in the absence (white bars) or presence (black bars) of SRM1648 (200 ug/mL). Data are mean + SE from 9-10 rats. (C) IL-8 release from
bovine intrapulmonary artery endothelial cells incubated for 24 hr in the absence (white bar) or presence (black bar) of SRM1648 (200 ug/mL). Data are mean + SE
from three or four experiments. NS, not significant.

*p<0.05; **p<0.01.
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also after in vivo intratracheal instillation.
Manufactured PM, however, including
nanoparticles, did not exhibit this effect.

The relaxation responses to ACh and NO
donors, but not to 8-Br-cGMP, were decreased
after exposure of intrapulmonary arteries to

SRM1648 (200 pg/mL for 24 hr). In addition
to relaxation, ACh-induced cGMP accumula-
tion was also decreased in such conditions.
This demonstrates that SRM 1648 induced a
decrease in responsiveness of smooth muscle to

NO, rather than a decrease in endothelial NO
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Figure 6. (A) Relaxant effect of ACh in rat intrapulmonary arteries incubated for 24 hr with SRM1648
(200 pg/mL), or with 1 mM tempol with or without SRM1648, or with 200 pM ascorbate with or without
SRM1648, or with T mM tempol added 15 min before precontraction with PGF,,, with or without SRM1648.
Control arteries were incubated in medium only. Data are mean + SE from four to six rats. NS, not significant.
(B) DHE staining in rat intrapulmonary arteries incubated for 24 hr in the absence (control) or presence of
200 pg/mL SRM1648: representative photomicrographs of three independent experiments.
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Figure 7. (A) HES staining of lung slices prepared from rats instilled with 5 mg SRM1648 12 hr or 72 hr
before euthanization: representative light micrographs of three independent experiments. Arrows indicate
the presence of particles. (B) Relaxant effect of ACh in intrapulmonary arteries from rats instilled with
saline, 5 mg SRM1648, or 5 mg fTi0, 12 hr before euthanization. Data are mean + SE from three to seven

rats. NS, not significant.
*p<0.05.
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production and/or bioactivity, and that
SRM1648 impairs the NO signaling pathway
upstream of activation of cGMP-dependent
protein kinases. YC-1-induced relaxation was
not affected by SRM 1648, supporting the view
that impairment of the NO pathway is likely
attributable to a decrease in guanylyl cyclase
activation by NO. This argues against a role of
decreased expression of guanylyl cyclase in
SRM1648-induced impairment of NO-
dependent relaxation. In addition, this study
demonstrates that impairment is selective for
the NO pathway, because other relaxant mech-
anisms (Ka7p activation by levcromakalim,
adenylyl cyclase activation by forskolin, and
{,-adrenergic receptor activation by isopro-
terenol) remained unaffected by SRM1648.

Particular core and/or adsorbed con-
stituents may be responsible for PM-induced
impairment of NO-dependent relaxation. To
address this question, we compared effects of
SRM1648 with those of other particles, with
different core composition and mean diameter,
that are relatively free of adsorbed constituents.
Neither carbon black nor TiO, particles modi-
fied ACh-induced relaxation in rat intrapul-
monary arteries. Even though comparison
between particle types is difficult, results show
that, among particles of similar size range
(PM, 5), SRM1648, but not fTi0O,, decreased
ACh-induced relaxation. Thus, adsorbed com-
ponents of SRM1648, rather than particulate
core, are likely responsible for impaired NO-
dependent relaxation. The water-soluble frac-
tion of inhaled PM is more biologically relevant
because its components could more easily reach
pulmonary vessels than can whole particles or
the insoluble fraction (Li et al. 2005).

Several 7n vivo studies have demonstrated a
decrease in endothelium-dependent relaxation
of systemic or pulmonary arteries after exposure
to PM (Brook et al. 2002; Nurkiewicz et al.
2004, 2006; Tornqyist et al. 2007). This study
demonstrates that, like iz vitro exposure, in vivo
exposure to SRM1648 also resulted in a
decrease of NO-dependent relaxation in
response to ACh in intrapulmonary arteries.
Moreover, as in i vitro studies, fTi0, failed to
alter relaxation to ACh when instilled in ani-
mals. This not only argues against a nonspecific
response resulting from intratracheal instillation
of particles, but also further supports the idea
that impairment of NO pathway is caused by
adsorbed components of SRM1648, rather
than by the particular core. SRM1648 and
fTi0O, have a similar size range, so it seems
unlikely that their differential 7% vivo effects can
be attributed to size-related differential penetra-
tion in the bronchiolar space. Interestingly,
we observed SRM1648-induced decreases in
relaxation to ACh 12 hr after instillation, but
not after longer delays. Elucidation of the
mechanisms underlying this transient aspect of
the impairment of ACh-induced relaxation
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deserves further investigation. Release of anti-
inflammatory mediators (e.g., transforming
growth factor-f or IL-10) may recover or coun-
teract SRM1648-induced alteration of NO-
dependent relaxation. Because the presence of
PM was clearly evidenced in lung parenchyma
removed 72 hr after SRM1648 instillation, it is
unlikely that recovery is related to elimination
of particle deposit from lung parenchyma.

Oxidative stress is a major contributor of
the adverse effects of PM (Baeza and Marano
2007; Oberdérster et al. 2005). In this study,
SRM1648-induced alteration of NO-dependent
relaxation was not modified in the presence of
the antioxidant tempol. Consistently, intra-
pulmonary artery exposed to SRM1648 did
not display an increase in ROS level. This
argues against a role of oxidative stress in the
SRM1648-induced impairment of NO-medi-
ated relaxation. This differs from data showing
that superoxide dismutase can prevent particle-
induced decrease in relaxation to ACh in rat
aorta (Ikeda et al. 1995) and that SRM1648
increases production of ROS in pulmonary
endothelial cells (Li et al. 2006). Oxidative
stress appears as an acute response (within
5-10 min) in endothelial cells (including those
from pulmonary artery; Li et al. 2006) or arter-
ies exposed to PM. Even though oxidative
stress might be an early event in intrapul-
monary arteries exposed to SRM1648, it does
not seem to play a role in impairment of NO
pathway, because addition of antioxidants con-
comitantly with SRM1648 failed to prevent
impairment of NO-dependent relaxation.
Oxidative stress is recognized as a key process
underlying endothelial dysfunction in pul-
monary arteties (Fresquet et al. 2006). As dis-
cussed above, SRM1648 decreased activation
of guanylyl cyclase by NO within smooth
muscle, a mechanism that may be independent
of oxidative stress.

Release of inflammatory mediators is asso-
ciated with PM-induced impairment of
endothelium-dependent vasodilatation in sys-
temic arteries (Nurkiewicz et al. 2006;
Térnqvist et al. 2007). In the present study,
the anti-inflammatory drug dexamethasone
prevented SRM1648-induced impairment of
NO-dependent relaxation in intrapulmonary
arteries. Moreover, SRM 1648 increased the
release of proinflammatory mediators
(TNF-a,, IL-8) from intrapulmonary arteries
or endothelial cells. Proinflammatory media-
tors such as TNF-a are key players in alter-
ations of the NO signaling pathway in the
vasculature (Huang and Vita 20006), including
in pulmonary arteries (Greenberg et al. 1993).
They may induce a decrease in NO, but not
c¢GMP, responsiveness in systemic resistance

Particulate matter and pulmonary circulation

arteries (Jiménez-Altayd et al. 2006). We show
here that SRM1648 also increased IL-8
release. This chemokine is a key mediator in
inflammatory pulmonary diseases, not only by
attracting neutrophils, but also by acting on
vascular cells (Mukaida 2003).

In conclusion, this study shows that urban
but not manufactured PM (including
nanoparticles) impairs NO-mediated relax-
ation, without affecting cGMP responsiveness
in rat intrapulmonary arteries. We attribute
this result to an oxidative-stress—independent
inflammatory response, resulting in decreased
guanylyl cyclase activation by NO. Such
impairment of the NO pathway in pulmonary
circulation may favor vasoconstriction, remod-
eling, and thrombosis, all contributing to
enhance arterial resistance, which in turn may
have a negative impact on cardiac function.
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